77 resultados para FELINE VIRAL INFECTIONS
em University of Queensland eSpace - Australia
Resumo:
This paper reviews the current concepts of viral classification, infection and replication. The clinical presentation of common oral viral infections encountered in the dental practice are discussed, including: herpes simplex virus types 1 and 2; Epstein-Barr virus; varicella-zoster virus; Coxsackie virus; human papilloma virus; and human immunodeficiency virus. The diagnosis, principles of management and pharmacological agents available for the treatment of oral viral infections are also discussed.
Resumo:
The classical paradigm for T cell dynamics suggests that the resolution of a primary acute virus infection is followed by the generation of a long-lived pool of memory T cells that is thought to be highly stable. Very limited alteration in this repertoire is expected until the immune system is re-challenged by reactivation of latent viruses or by cross-reactive pathogens. Contradicting this view, we show here that the T cell repertoire specific for two different latent herpes viruses in the peripheral blood displayed significant contemporaneous co-fluctuations of virus-specific CD8(+) T cells. The coordinated responses to two different viruses suggest that the fluctuations within the T cell repertoire may be driven by sub-clinical viral reactivation or a more generalized 'bystander' effect. The later contention was supported by the observation that, while absolute number of CD3(+) T cells and their subsets and also the cell surface phenotype of antigen-specific T cells remained relatively constant, a loss of CD62L expression in the total CD8(+) T cell population was coincident with the expansion of tetramer-positive virus-specific T cells. This study demonstrates that the dynamic process of T cell expansion and contractions in persistent viral infections is not limited to the acute phase of infection, but also continues during the latent phase of infection.
Resumo:
The purpose of this study was to examine whether methadone maintenance treatment reduces injecting risk behaviour land therefore transmission of blood-borne viral infections) among prisoners in New South Wales (NSW), using comparison of retrospective reports of drug use in prisons for people who received standard drug treatment, time-limited methadone treatment and methadone maintenance treatment, The setting for the study was the NSW prison system. One hundred and eighty-five injecting drug users who had been recently released from NSW prisons were recruited in 1993, Self-reported drug use and injecting risk behaviour were compared in inmates who received standard drug treatment (counselling), time-limited methadone treatment and methadone maintenance treatment. HIV status was determined by serology, Intervention comprised high and low dose methadone treatment and counselling. The groups were similar in terms of most basic demographic characteristics but subjects who had been maintained on methadone reported a significantly lower prevalence of heroin injection, syringe sharing and scored lower on an HIV Risk-taking Behavioural Scale than subjects who received standard drug treatment and time-limited methadone treatment, This study suggests that methadone treatment is associated with reduced injecting risk behaviour in prison with adequate (greater than 60 mg) dose and duration in treatment. These treatment conditions are known to increase effectiveness in community-based methadone programmes. Prospective studies are required to evaluate the effectiveness of methadone programmes in the prevention of HIV and other blood-borne viral infections among IDU prisoners.
Resumo:
Natural killer (NK) cells are an important component of the innate cellular immune system. They are particularly important during the early immune responses following virus infection, prior to the induction of cytotoxic T cells (CTL). Unlike CTL, which recognize specific peptides displayed on the surface of cells by class I MHC, NK cells respond to aberrant expression of cell surface molecules, in particular class I MHC, in a non-specific manner. Thus, cells expressing low levels of surface class I MHC are susceptible to recognition by NK cells, with concomitant triggering of cytolytic and cytokine-mediated responses. Many viruses, including the cytomegaloviruses, downregulate cell surface MHC class I: this is likely to provide protection against CTL-mediated clearance of infected cells, but may also render infected cells sensitive to NK-cell attack. This review focuses upon cytomegalovirus-encoded proteins that are believed to promote evasion of NK-cell-mediated immunity. The class I MHC homologues, encoded by all cytomegaloviruses characterised to date, have been implicated as molecular 'decoys', which may mimic the ability of cellular MHC class I to inhibit NK-cell functions. Results from studies in vitro are not uniform, but in general they support the proposal that the class I homologues engage inhibitory receptors from NK cells and other cell types that normally interact with cellular class I. Consistent with this, in vivo studies of murine cytomegalovirus indicate that the class I homologue is required for efficient evasion of NK-cell-mediated clearance. Recently a second murine cytomegalovirus protein, a C-C chemokine homologue, has been implicated as promoting evasion of NK and T-cell-mediated clearance in vivo.
Resumo:
Until now, it has been unclear whether murine cytomegalovirus (MCMV)-encoded protein m144 directly regulates natural killer (NK) cell effector function and whether the effects of m144 are only strictly evident in the context of MCMV infection. We have generated clones of the transporter associated with antigen processing (TAP)-2-deficient RMA-S T lymphoma cell line and its parent cell line, RMA, that stably express significant and equivalent levels of m144. In vivo NK cell-mediated rejection of RMA-S-m144 lymphomas was reduced compared with rejection of parental or mock-transfected RMA-S clones, indicating the ability of m144 to regulate NK cell-mediated responses in vivo. Significantly, the accumulation of NK cells in the peritoneum was reduced in mice challenged with RMA-S-m144, as was the lytic activity of NK cells recovered from the peritoneum. Expression of m144 on RMA-S cells also conferred resistance to cytotoxicity mediated in vitro by interleukin 2-activated adherent spleen NK cells. In summary, the data demonstrate that m144 confers some protection from NK cell effector function mediated in the absence of target cell class I expression, but that in vivo the major effect of m144 is to regulate NK cell accumulation and activation at the site of immune challenge.
Resumo:
Inhibitors of proteolytic enzymes (proteases) are emerging as prospective treatments for diseases such as AIDS and viral infections, cancers, inflammatory disorders, and Alzheimer's disease. Generic approaches to the design of protease inhibitors are limited by the unpredictability of interactions between, and structural changes to, inhibitor and protease during binding. A computer analysis of superimposed crystal structures for 266 small molecule inhibitors bound to 48 proteases (16 aspartic, 17 serine, 8 cysteine, and 7 metallo) provides the first conclusive proof that inhibitors, including substrate analogues, commonly bind in an extended beta-strand conformation at the active sites of all these proteases. Representative superimposed structures are shown for (a) multiple inhibitors bound to a protease of each class, (b) single inhibitors each bound to multiple proteases, and (c) conformationally constrained inhibitors bound to proteases. Thus inhibitor/substrate conformation, rather than sequence/composition alone, influences protease recognition, and this has profound implications for inhibitor design. This conclusion is supported by NMR, CD, and binding studies for HIV-1 protease inhibitors/ substrates which, when preorganized in an extended conformation, have significantly higher protease affinity. Recognition is dependent upon conformational equilibria since helical and turn peptide conformations are not processed by proteases. Conformational selection explains the resistance of folded/structured regions of proteins to proteolytic degradation, the susceptibility of denatured proteins to processing, and the higher affinity of conformationally constrained 'extended' inhibitors/substrates for proteases. Other approaches to extended inhibitor conformations should similarly lead to high-affinity binding to a protease.
Resumo:
Virus-like particles (VLPs) are being currently investigated in vaccines against viral infections in humans. There are different recombinant-protein-expression systems available for obtaining the necessary VLP preparation for vaccination. However, the differences in post-translational modifications of the recombinant proteins obtained and their differences in efficacy in eliciting an anti-viral response in vaccines are not well established. In this study we have compared the posttranslational modifications of human papillomavirus type-6b major capsid protein L1 (HPV 6bL1) expressed using recombinant baculovirus (rBV) in Sf9 (Spodoptera frugiperda) insect cells, with the protein expressed using recombinant vaccinia virus (rVV) in CV-1 kidney epithelial cells, Two-dimensional gel electrophoresis of biosynthetically labelled rBV-expressed HPV 6bL1 showed several post-translationally modified variants of the protein, whereas rVV-expressed HPV 6bL1 showed only a few variants. Phosphorylations were detected at threonine and serine residues for the L1 expressed from rBV compared with phosphorylation at serine residues only for the L1 expressed from rVV. HPV 6bL1 expressed using rBV incorporated [H-3]mannose and [H-3]galactose, whereas HPV 6bL1 expressed using rVV incorporated only [H-3]galactose. We conclude that post-translational modification of recombinant HPV 6bL1 can differ according to the system used for its expression. Since recombinant L1 protein is a potential human-vaccine candidate, the implication of the observed differences in post-translational modifications on immunogenicity of L1 VLPs warrants investigation.
Resumo:
Background: The fact that some cancers and viral infections can be controlled by effector CD8 T cells led to the possibility of utilising minimal CD8 T cell epitope peptides as vaccines. However using minimal CD8 T cell epitope peptide immunisations and a tumour protection model in mice, we have previously shown that functional memory CD8 T cells are not generated unless CD4 T help is provided at the time of CD8 T cell priming. Short-lived effector cells nevertheless are generated in the absence of T help. Aim: To determine the role of CD4 T help in multiple immunisations. Method: Minimal CD8 T cell peptides of HPV16 E7 protein and Ovalbumin were used (with adjuvants Quil-A or IFA) as immunogens in C57BL mice. The presence of effector CD8 T cells were determined by tumour protection assays and was quantified by IFN-gamma ELISPOT assays. Results: In the present study we show that unless T help is provided at the time CD8 T cells are primed, no CD8 effector cells are generated when boosted with the vaccine again in the absence of T help. Our results further show that this failure could be prevented by the inclusion of a T helper peptide during the primary or booster immunisations.
Resumo:
Despite the importance of congenital viral infections in both veterinary and human medicine, only limited experimental work has been carried out to elucidate the mechanisms involved in transplacental virus infections. To further an understanding of fetal infection with pestiviruses, the distribution of bovine pestivirus in the uterine and fetal tissues of ewes in early pregnancy, following a natural route of infection, was investigated. On the 18th day of pregnancy, nine ewes were inoculated by the intranasal route with 1 X 10(5) 50% tissue culture infective doses of an Australian isolate of noncytopathic bovine pestivirus (bovine viral diarrhea virus genotype 1). All ewes were ovariohysterectomized at approximately 100 hours postinfection. Samples from the reproductive tract and conceptus were examined histologically and tested for bovine pestivirus by nested reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry and for interferon-tau mRNA expression by nonnested RT-PCR. Although no histopathologic changes were observed in the maternal or fetal tissues, virus was detected in the reproductive tract of all nine ewes and in all of the conceptuses examined. Al; the time of surgery, only two of the nine ewes were demonstrably viremic. This study demonstrates that bovine pestivirus can spread from a natural site of infection to the ovine fetus within 4 days in the absence of maternal immunity and despite the presence of interferon expression in the reproductive tract.
Resumo:
AIMS: To identify the respiratory viruses that are present among foals in New Zealand and to establish the age at which foals first become infected with these viruses. METHODS: Foals were recruited to the study in October/ November 1995 at the age of 1 month (Group A) or in March/ April 1996 at the age of 4-6 months (Groups B and C). Nasal swabs and blood samples were collected at monthly intervals. Nasal swabs and peripheral blood leucocytes (PBL) harvested from heparinised blood samples were used for virus isolation; serum harvested from whole-blood samples was used for serological testing for the presence of antibodies against equine herpesvirus (EHV)-1 or -4, equine rhinitis-A virus (ERAV), equine rhinitis-B virus (ERBV), equine adenovirus 1 (EAdV-1), equine arteritis virus (EAV), reovirus 3 and parainfluenza virus type 3 (PIV3). Twelve foals were sampled until December 1996; the remaining 19 foals were lost from the study at various times prior to this date. RESULTS: The only viruses isolated were EHV 2 and EHV 5. EHV 2 was isolated from 155/157 PBL samples collected during the period of study and from 40/172 nasal swabs collected from 18 foals. All isolations from nasal swabs, except one, were made over a period of 2-4 months from January to April (Group A), March to April (Group B) or May, to July (Group C). EHV 5 was isolated from either PBL, nasal swabs, or both, from 15 foals on 32 occasions. All foals were positive for antibodies to EHV 1 or EHV 4, as tested by serum neutralisation (SN), on at least one sampling occasion and all but one were positive for EHV 1 antibodies measured by enzyme-linked immunosorbent assay (ELISA) on at least one sampling occasion. Recent EHV 1 infection was evident at least once during the period of study in 18/23 (78%) foals for which at least two samples were collected. SN antibodies to ERBV were evident in 19/23 (83%) foals on at least one sampling occasion and 15/23 foals showed evidence of seroconversion to ERBV Antibodies to ERAV were only detected in serum samples collected from foals in Group A and probably represented maternally-derived antibodies. Haemagglutination inhibition (HI) antibody titres greater than or equal to 1:10 to EAdV-1 were evident in 21/23 (91%) foals on at least one sampling occasion and 16/23 foals showed serological evidence of recent EAdV-1 infection. None of the 67 serum samples tested were positive for antibodies to EAV, reovirus 3 or PIV3. There was no clear association between infection with any of the viruses isolated or tested for and the presence of overt clinical signs of respiratory disease. CONCLUSIONS: There was serological and/or virological evidence that EHV-1, EHV-2, EHV-5, EAdV-1 and ERBV infections were present among foals in New Zealand. EHV-2 infection was first detected in foals as young as 3 months of age. The isolation of EHV-2 from nasal swabs preceded serological evidence of infection with other respiratory viruses, suggesting that EHV-2 may predispose foals to other viral infections.
Resumo:
Cell culture and direct fluorescent antibody (DFA) assays have been traditionally used for the laboratory diagnosis of respiratory viral infections. Multiplex reverse transcriptase polymerase chain reaction (m-RT-PCR) is a sensitive, specific, and rapid method for detecting several DNIA and RNA viruses in a single specimen. We developed a m-RT-PCR assay that utilizes multiple virus-specific primer pairs in a single reaction mix combined with an enzyme-linked amplicon hybridization assay (ELAHA) using virus-specific probes targeting unique gene sequences for each virus. Using this m-RT-PCR-ELAHA, we examined the presence of seven respiratory viruses in 598 nasopharyngeal aspirate (NPA) samples from patients with suspected respiratory infection. The specificity of each assay was 100%. The sensitivity of the DFA was 79.7% and the combined DFA/culture amplified-DFA (CA-DFA) was 88.6% when compared to the m-RT-PCR-ELAHA. Of the 598 NPA specimens screened by m-RT-PCR-ELAHA, 3% were positive for adenovirus (ADM), 2% for influenza A (Flu A) virus, 0.3% for influenza B (Flu B) virus, 1% for parainfluenza type I virus (PIV1), 1% for parainfluenza type 2 virus (PIV2), 5.5% for parainfluenza type 3 virus (PIV3), and 21% for respiratory syncytial virus (RSV). The enhanced sensitivity, specificity, rapid result turnaround time and reduced expense of the m-RT-PCR-ELAHA compared to DFA and CA-DFA, suggests that this assay would be a significant improvement over traditional assays for the detection of respiratory viruses in a clinical laboratory.
Resumo:
West Nile Virus (WNV) is a mosquito-borne flavivirus with a rapidly expanding global distribution. Infection causes severe neurological disease and fatalities in both human and animal hosts. The West Nile viral protease (NS2B-NS3) is essential for post-translational processing in host-infected cells of a viral polypeptide precursor into structural and functional viral proteins, and its inhibition could represent a potential treatment for viral infections. This article describes the design, expression, and enzymatic characterization of a catalytically active recombinant WNV protease, consisting of a 40-residue component of cofactor NS2B tethered via a noncleavable nonapeptide (G(4)SG(4)) to the N-terminal 184 residues of NS3. A chromogenic assay using synthetic para-nitroanilide (pNA) hexapeptide substrates was used to identify optimal enzyme-processing conditions (pH 9.5, I < 0.1 M, 30% glycerol, 1 mM CHAPS), preferred substrate cleavage sites, and the first competitive inhibitor (Ac-FASGKR- H, IC50 &SIM; 1 μM). A putative three-dimensional structure of WNV protease, created through homology modeling based on the crystal structures of Dengue-2 and Hepatitis C NS3 viral proteases, provides some valuable insights for structure-based design of potent and selective inhibitors of WNV protease.
Resumo:
The interferon (IFN) response is the first line of defense against viral infections, and the majority of viruses have developed different strategies to counteract IFN responses in order to ensure their survival in an infected host. In this study, the abilities to inhibit IFN signaling of two closely related West Nile viruses, the New York 99 strain (NY99) and Kunjin virus (KUN), strain MRM61C, were analyzed using reporter plasmid assays, as well as immunofluorescence and Western blot analyses. We have demonstrated that infections with both NY99 and KUN, as well as transient or stable transfections with their replicon RNAs, inhibited the signaling of both alpha/beta IFN (IFN-alpha/beta) and gamma IFN (IFN-gamma) by blocking the phosphorylation of STAT1 and its translocation to the nucleus. In addition, the phosphorylation of STAT2 and its translocation to the nucleus were also blocked by KUN, NY99, and their replicons in response to treatment with IFN-alpha. IFN-alpha signaling and STAT2 translocation to the nucleus was inhibited when the KUN nonstructural proteins NS2A, NS2B, NS3, NS4A, and NS4B, but not NS1 and NS5, were expressed individually from the pcDNA3 vector. The results clearly demonstrate that both NY99 and KUN inhibit IFN signaling by preventing STAT1 and STAT2 phosphorylation and identify nonstructural proteins. responsible for this inhibition.
Resumo:
Dendritic cells (DCs) regulate various aspects of innate immunity, including natural killer (NK) cell function. Here we define the mechanisms involved in DC - NK cell interactions during viral infection. NK cells were efficiently activated by murine cytomegalovirus ( MCMV) - infected CD11b(+) DCs. NK cell cytotoxicity required interferon-alpha and interactions between the NKG2D activating receptor and NKG2D ligand, whereas the production of interferon-gamma by NK cells relied mainly on DC-derived interleukin 18. Although Toll-like receptor 9 contributes to antiviral immunity, we found that signaling pathways independent of Toll-like receptor 9 were important in generating immune responses to MCMV, including the production of interferon-alpha and the induction of NK cell cytotoxicity. Notably, adoptive transfer of MCMV-activated CD11b(+) DCs resulted in improved control of MCMV infection, indicating that these cells participate in controlling viral replication in vivo.
Resumo:
Background: In early 2001 Australia experienced a sudden and unexpected disruption to heroin availability, know as the 'heroin shortage'. This 'shortage has been linked to a decrease in needle and syringe output and therefore possibly a reduction in injecting drug use. We aimed to examine changes, if any, in blood-borne viral infections and presentations for injecting related problems related to injecting drug use following the reduction heroin availability in Australia, in the context of widespread harm reduction measures. Methods: Time series analysis of State level databases on HIV, hepatitis B, hepatitis C notifications and hospital and emergency department data. Examination of changes in HIV, hepatitis B, hepatitis C notifications and hospital and emergency department admissions for injection-related problems following the onset of the heroin shortage; non-parametric curve-fitting of number of hepatitis C notifications among those aged 15 - 19 years. Results: There were no changes observed in hospital visits for injection-related problems. There was no change related to the onset heroin shortage in the number of hepatitis C notifications among persons aged 15 - 19 years, but HCV notifications have subsequently decreased in this group. No change occurred in HIV and hepatitis B notifications. Conclusion: A marked reduction in heroin supply resulted in no increase in injection-related harm at the community level. However, a delayed decrease in HCV notifications among young people may be related. These changes occurred in a setting with widespread, publicly funded harm reduction initiatives.