110 resultados para Expert Knowledge
em University of Queensland eSpace - Australia
Resumo:
Assessments for assigning the conservation status of threatened species that are based purely on subjective judgements become problematic because assessments can be influenced by hidden assumptions, personal biases and perceptions of risks, making the assessment process difficult to repeat. This can result in inconsistent assessments and misclassifications, which can lead to a lack of confidence in species assessments. It is almost impossible to Understand an expert's logic or visualise the underlying reasoning behind the many hidden assumptions used throughout the assessment process. In this paper, we formalise the decision making process of experts, by capturing their logical ordering of information, their assumptions and reasoning, and transferring them into a set of decisions rules. We illustrate this through the process used to evaluate the conservation status of species under the NatureServe system (Master, 1991). NatureServe status assessments have been used for over two decades to set conservation priorities for threatened species throughout North America. We develop a conditional point-scoring method, to reflect the current subjective process. In two test comparisons, 77% of species' assessments using the explicit NatureServe method matched the qualitative assessments done subjectively by NatureServe staff. Of those that differed, no rank varied by more than one rank level under the two methods. In general, the explicit NatureServe method tended to be more precautionary than the subjective assessments. The rank differences that emerged from the comparisons may be due, at least in part, to the flexibility of the qualitative system, which allows different factors to be weighted on a species-by-species basis according to expert judgement. The method outlined in this study is the first documented attempt to explicitly define a transparent process for weighting and combining factors under the NatureServe system. The process of eliciting expert knowledge identifies how information is combined and highlights any inconsistent logic that may not be obvious in Subjective decisions. The method provides a repeatable, transparent, and explicit benchmark for feedback, further development, and improvement. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
This paper highlights the importance of design expertise, for designing liquid retaining structures, including subjective judgments and professional experience. Design of liquid retaining structures has special features different from the others. Being more vulnerable to corrosion problem, they have stringent requirements against serviceability limit state of crack. It is the premise of the study to transferring expert knowledge in a computerized blackboard system. Hybrid knowledge representation schemes, including production rules, object-oriented programming, and procedural methods, are employed to express engineering heuristics and standard design knowledge during the development of the knowledge-based system (KBS) for design of liquid retaining structures. This approach renders it possible to take advantages of the characteristics of each method. The system can provide the user with advice on preliminary design, loading specification, optimized configuration selection and detailed design analysis of liquid retaining structure. It would be beneficial to the field of retaining structure design by focusing on the acquisition and organization of expert knowledge through the development of recent artificial intelligence technology. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Motivation: Prediction methods for identifying binding peptides could minimize the number of peptides required to be synthesized and assayed, and thereby facilitate the identification of potential T-cell epitopes. We developed a bioinformatic method for the prediction of peptide binding to MHC class II molecules. Results: Experimental binding data and expert knowledge of anchor positions and binding motifs were combined with an evolutionary algorithm (EA) and an artificial neural network (ANN): binding data extraction --> peptide alignment --> ANN training and classification. This method, termed PERUN, was implemented for the prediction of peptides that bind to HLA-DR4(B1*0401). The respective positive predictive values of PERUN predictions of high-, moderate-, low- and zero-affinity binder-a were assessed as 0.8, 0.7, 0.5 and 0.8 by cross-validation, and 1.0, 0.8, 0.3 and 0.7 by experimental binding. This illustrates the synergy between experimentation and computer modeling, and its application to the identification of potential immunotheraaeutic peptides.
Resumo:
Examples from the Murray-Darling basin in Australia are used to illustrate different methods of disaggregation of reconnaissance-scale maps. One approach for disaggregation revolves around the de-convolution of the soil-landscape paradigm elaborated during a soil survey. The descriptions of soil ma units and block diagrams in a soil survey report detail soil-landscape relationships or soil toposequences that can be used to disaggregate map units into component landscape elements. Toposequences can be visualised on a computer by combining soil maps with digital elevation data. Expert knowledge or statistics can be used to implement the disaggregation. Use of a restructuring element and k-means clustering are illustrated. Another approach to disaggregation uses training areas to develop rules to extrapolate detailed mapping into other, larger areas where detailed mapping is unavailable. A two-level decision tree example is presented. At one level, the decision tree method is used to capture mapping rules from the training area; at another level, it is used to define the domain over which those rules can be extrapolated. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Predicting the various responses of different species to changes in landscape structure is a formidable challenge to landscape ecology. Based on expert knowledge and landscape ecological theory, we develop five competing a priori models for predicting the presence/absence of the Koala (Phascolarctos cinereus) in Noosa Shire, south-east Queensland (Australia). A priori predictions were nested within three levels of ecological organization: in situ (site level) habitat (< 1 ha), patch level (100 ha) and landscape level (100-1000 ha). To test the models, Koala surveys and habitat surveys (n = 245) were conducted across the habitat mosaic. After taking into account tree species preferences, the patch and landscape context, and the neighbourhood effect of adjacent present sites, we applied logistic regression and hierarchical partitioning analyses to rank the alternative models and the explanatory variables. The strongest support was for a multilevel model, with Koala presence best predicted by the proportion of the landscape occupied by high quality habitat, the neighbourhood effect, the mean nearest neighbour distance between forest patches, the density of forest patches and the density of sealed roads. When tested against independent data (n = 105) using a receiver operator characteristic curve, the multilevel model performed moderately well. The study is consistent with recent assertions that habitat loss is the major driver of population decline, however, landscape configuration and roads have an important effect that needs to be incorporated into Koala conservation strategies.
Resumo:
There have been many models developed by scientists to assist decision-makers in making socio-economic and environmental decisions. It is now recognised that there is a shift in the dominant paradigm to making decisions with stakeholders, rather than making decisions for stakeholders. Our paper investigates two case studies where group model building has been undertaken for maintaining biodiversity in Australia. The first case study focuses on preservation and management of green spaces and biodiversity in metropolitan Melbourne under the umbrella of the Melbourne 2030 planning strategy. A geographical information system is used to collate a number of spatial datasets encompassing a range of cultural and natural assets data layers including: existing open spaces, waterways, threatened fauna and flora, ecological vegetation covers, registered cultural heritage sites, and existing land parcel zoning. Group model building is incorporated into the study through eliciting weightings and ratings of importance for each datasets from urban planners to formulate different urban green system scenarios. The second case study focuses on modelling ecoregions from spatial datasets for the state of Queensland. The modelling combines collaborative expert knowledge and a vast amount of environmental data to build biogeographical classifications of regions. An information elicitation process is used to capture expert knowledge of ecoregions as geographical descriptions, and to transform this into prior probability distributions that characterise regions in terms of environmental variables. This prior information is combined with measured data on the environmental variables within a Bayesian modelling technique to produce the final classified regions. We describe how linked views between descriptive information, mapping and statistical plots are used to decide upon representative regions that satisfy a number of criteria for biodiversity and conservation. This paper discusses the advantages and problems encountered when undertaking group model building. Future research will extend the group model building approach to include interested individuals and community groups.
Resumo:
This paper describes a coupled knowledge-based system (KBS) for the design of liquid-retaining structures, which can handle both the symbolic knowledge processing based on engineering heuristics in the preliminary synthesis stage and the extensive numerical crunching involved in the detailed analysis stage. The prototype system is developed by employing blackboard architecture and a commercial shell VISUAL RULE STUDIO. Its present scope covers design of three types of liquid-retaining structures, namely, a rectangular shape with one compartment, a rectangular shape with two compartments and a circular shape. Through custom-built interactive graphical user interfaces, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking and member sizing optimization. It is also integrated with various relational databases that provide the system with sectional properties, moment and shear coefficients and final member details. This system can act as a consultant to assist novice designers in the design of liquid-retaining structures with increase in efficiency and optimization of design output and automated record keeping. The design of a typical example of the liquid-retaining structure is also illustrated. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
The results presented in this report form a part of a larger global study on the major issues in BPM. Only one part of the larger study is reported here, viz. interviews with BPM experts. Interviews of BPM tool vendors together with focus groups involving user organizations, are continuing in parallel and will set the groundwork for the identification of BPM issues on a global scale via a survey (including a Delphi study). Through this multi-method approach, we identify four distinct sets of outcomes. First, as is the focus of this report, we identify the BPM issues as perceived by BPM experts. Second, the research design allows us to gain insight into the opinions of organisations deploying BPM solutions. Third, an understanding of organizations’ misconceptions of BPM technologies, as confronted by BPM tool vendors is obtained. Last, we seek to gain an understanding of BPM issues on a global scale, together with knowledge of matters of concern. This final outcome is aimed to produce an industry driven research agenda which will inform practitioners and in particular, the research community world-wide on issues and challenges that are prevalent or emerging in BPM and related areas.
Resumo:
Design of liquid retaining structures involves many decisions to be made by the designer based on rules of thumb, heuristics, judgment, code of practice and previous experience. Various design parameters to be chosen include configuration, material, loading, etc. A novice engineer may face many difficulties in the design process. Recent developments in artificial intelligence and emerging field of knowledge-based system (KBS) have made widespread applications in different fields. However, no attempt has been made to apply this intelligent system to the design of liquid retaining structures. The objective of this study is, thus, to develop a KBS that has the ability to assist engineers in the preliminary design of liquid retaining structures. Moreover, it can provide expert advice to the user in selection of design criteria, design parameters and optimum configuration based on minimum cost. The development of a prototype KBS for the design of liquid retaining structures (LIQUID), using blackboard architecture with hybrid knowledge representation techniques including production rule system and object-oriented approach, is presented in this paper. An expert system shell, Visual Rule Studio, is employed to facilitate the development of this prototype system. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper delineates the development of a prototype hybrid knowledge-based system for the optimum design of liquid retaining structures by coupling the blackboard architecture, an expert system shell VISUAL RULE STUDIO and genetic algorithm (GA). Through custom-built interactive graphical user interfaces under a user-friendly environment, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking, and member sizing optimization. For structural optimization, GA is applied to the minimum cost design of structural systems with discrete reinforced concrete sections. The design of a typical example of the liquid retaining structure is illustrated. The results demonstrate extraordinarily converging speed as near-optimal solutions are acquired after merely exploration of a small portion of the search space. This system can act as a consultant to assist novice designers in the design of liquid retaining structures.
Resumo:
The present study investigated whether the impact of expert testimony was influenced by the congruency between the gender of the expert and the gender orientation of the case. Participants (N = 62) read a trial transcript involving a price-fixing allegation in either a male or female oriented domain. Within the case, the gender of the expert was manipulated. As predicted, the impact of the expert (e.g. damage awards) was greater when the gender of the expert and domain of the case were congruent as opposed to incongruent. Results also indicated that the impact of gender-domain congruency was particularly pronounced following group discussion. In addition, there was evidence that this effect was mediated through participants' evaluations of the expert witness.
Resumo:
The design of liquid-retaining structures involves many decisions to be made by the designer based on rules of thumb, heuristics, judgement, codes of practice and previous experience. Structural design problems are often ill structured and there is a need to develop programming environments that can incorporate engineering judgement along with algorithmic tools. Recent developments in artificial intelligence have made it possible to develop an expert system that can provide expert advice to the user in the selection of design criteria and design parameters. This paper introduces the development of an expert system in the design of liquid-retaining structures using blackboard architecture. An expert system shell, Visual Rule Studio, is employed to facilitate the development of this prototype system. It is a coupled system combining symbolic processing with traditional numerical processing. The expert system developed is based on British Standards Code of Practice BS8007. Explanations are made to assist inexperienced designers or civil engineering students to learn how to design liquid-retaining structures effectively and sustainably in their design practices. The use of this expert system in disseminating heuristic knowledge and experience to practitioners and engineering students is discussed.
Resumo:
Many studies on birds focus on the collection of data through an experimental design, suitable for investigation in a classical analysis of variance (ANOVA) framework. Although many findings are confirmed by one or more experts, expert information is rarely used in conjunction with the survey data to enhance the explanatory and predictive power of the model. We explore this neglected aspect of ecological modelling through a study on Australian woodland birds, focusing on the potential impact of different intensities of commercial cattle grazing on bird density in woodland habitat. We examine a number of Bayesian hierarchical random effects models, which cater for overdispersion and a high frequency of zeros in the data using WinBUGS and explore the variation between and within different grazing regimes and species. The impact and value of expert information is investigated through the inclusion of priors that reflect the experience of 20 experts in the field of bird responses to disturbance. Results indicate that expert information moderates the survey data, especially in situations where there are little or no data. When experts agreed, credible intervals for predictions were tightened considerably. When experts failed to agree, results were similar to those evaluated in the absence of expert information. Overall, we found that without expert opinion our knowledge was quite weak. The fact that the survey data is quite consistent, in general, with expert opinion shows that we do know something about birds and grazing and we could learn a lot faster if we used this approach more in ecology, where data are scarce. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
Owing to the high degree of vulnerability of liquid retaining structures to corrosion problems, there are stringent requirements in its design against cracking. In this paper, a prototype knowledge-based system is developed and implemented for the design of liquid retaining structures based on the blackboard architecture. A commercially available expert system shell VISUAL RULE STUDIO working as an ActiveX Designer under the VISUAL BASIC programming environment is employed. Hybrid knowledge representation approach with production rules and procedural methods under object-oriented programming are used to represent the engineering heuristics and design knowledge of this domain. It is demonstrated that the blackboard architecture is capable of integrating different knowledge together in an effective manner. The system is tailored to give advice to users regarding preliminary design, loading specification and optimized configuration selection of this type of structure. An example of application is given to illustrate the capabilities of the prototype system in transferring knowledge on liquid retaining structure to novice engineers. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The Codex Alimentarius Commission of the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) develops food standards, guidelines and related texts for protecting consumer health and ensuring fair trade practices globally. The major part of the world's population lives in more than 160 countries that are members of the Codex Alimentarius. The Codex Standard on Infant Formula was adopted in 1981 based on scientific knowledge available in the 1970s and is currently being revised. As part of this process, the Codex Committee on Nutrition and Foods for Special Dietary Uses asked the ESPGHAN Committee on Nutrition to initiate a consultation process with the international scientific community to provide a proposal on nutrient levels in infant formulae, based on scientific analysis and taking into account existing scientific reports on the subject. ESPGHAN accepted the request and, in collaboration with its sister societies in the Federation of International Societies on Pediatric Gastroenterology, Hepatology and Nutrition, invited highly qualified experts in the area of infant nutrition to form an International Expert Group (IEG) to review the issues raised. The group arrived at recommendations on the compositional requirements for a global infant formula standard which are reported here.