125 resultados para Experimental damage location
em University of Queensland eSpace - Australia
Resumo:
This paper concerns a collaborative experiment in architectural design teaching and thinking developed during a workshop held at The University of Queensland in 2000. The programme explored the possibilities and the consequences of relocating location-specific architecture to a different context - a 'Trans-Cultural Trans-Location'. The project involved the careful study by Australia-based students of a house designed for a Japanese family in a dense part of Tokyo by the eminent Japanese architect Tadao Ando, and the subsequent translocation of the ideas that underlay the building to a suburban location in Brisbane, for a theoretical equivalent Australian family. This experimental project examined the universality of architectural concepts, their appreciation and the pedagogical setting. The project raised questions of: - How well do students from one culture comprehend architecture designed specifically for another – which are the areas of misunderstanding and understanding? - How can students transpose architectural ideas from one social and physical context to one that is almost entirely the opposite? - What are the limits of collaboration and exchange in design teaching and how do they reveal similarities, inconsistencies and the unexpected in the aims of the teacher and of the student? These questions suggest that in order to comprehend a design, we must understand the culture within which it originated, and that we must understand the cultures within which we work in order to design. This paper is written in two parts. The first part establishes a framework for discussing the contrast of the cultural settings studied. The second part considers the nature, conduct and results of the Studio Workshop itself.
Resumo:
Comparisons are made between experimental measurements and numerical simulations of ionizing flows generated in a superorbital facility. Nitrogen, with a freestream velocity of around 10 km/s, was passed over a cylindrical model, and images were recorded using two-wavelength holographic interferometry. The resulting density, electron concentration, and temperature maps were compared with numerical simulations from the Langley Research Center aerothermodynamic upwind relaxation algorithm. The results showed generally good agreement in shock location and density distributions. Some discrepancies were observed for the electron concentration, possibly, because simulations were of a two-dimensional flow, whereas the experiments were likely to have small three-dimensional effects.
Resumo:
Due to the existence of global modes and local modes of the neighbouring members, damage detection on a structure is more challenging than damage on isolated beams. Detection of an artificial circumferential crack on a joint in a frame-like welded structure is studied in this paper using coupled response measurements. Similarity to real engineering structures is maintained in the fabrication of the test frame. Both the chords and the branch members have hollow sections and the branch members have smaller sizes. The crack is created by a hacksaw on a joint where a branch meets the chord. The methodology is first demonstrated on a single hollow section beam. The test results are then presented for the damaged and undamaged frame. The existence of the damage is clearly observable from the experimental results. It is suggested that this approach offers the-potential to detect damage in welded structures such as cranes, mining equipment, steel-frame bridges, naval and offshore structures. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Despite a century's knowledge that soluble aluminum (Al) is associated with acid soils and poor plant growth, it is still uncertain how Al exerts its deleterious effects. Hypotheses include reactions of Al with components of the cell wall, plasmalemma, or cytoplasm of cells close to the root tip, thereby reducing cell expansion and root growth. Digital microscopy was used to determine the initial injuries of soluble Al to mungbean (Vigna radiata L.) roots. Roots of young seedlings were marked with activated carbon particles and grown in 1 mm CaCl2 solution at pH 6 for ca. 100 min (control period), and AlCl3 solution was added to ensure a final concentration of 50 muM Al (pH 4). Further studies were conducted on the effects of pH 4 with and without 50 muM Al. Four distinct, but possibly related, initial detrimental effects of soluble Al were noted. First, there was a 56-75% reduction in the root elongation rate, first evident 18-52 min after the addition of Al, root elongation continuing at a decreased rate for ca. 20 It. Decreasing solution pH from 6 to 4 increased the root elongation rate 4-fold after 5 min, which decreased to close to the original rate after 130 min. The addition of Al during the period of rapid growth at pH 4 reduced the root elongation rate by 71% 14 min after the addition of Al. The activated carbon marks on the roots showed that, during the control period, the zone of maximum root growth occurred at 2,200-5,100 mum from the root tip (i.e. the cell elongation zone). It was there that Al first exerted its detrimental effect and low pH increased root elongation. Second, soluble Al prevented the progress of cells from the transition to the elongation phase, resulting in a considerable reduction of root growth over the longer term. The third type of soluble Al injury occurred after exposure for ca. 4 h to 50 mum Al when a kink developed at 2,370 mum from the root tip. Fourth, ruptures of the root epidermal and cortical cells at 1,900-2,300 mum from the tip occurred greater than or equal to4.3 h after exposure to soluble Al. The timing and location of Al injuries support the contention that Al initially reduces cell elongation, thus decreasing root growth and causing damage to epidermal and cortical cells.
Resumo:
Complement activation contributes to inflammation and tissue damage in human demyelinating diseases and in rodent models of demyelination. Inhibitors of complement activation ameliorate disease in the rat model antibody-dependent experimental autoimmune encephalomyelitis and rats unable to generate the membrane attack complex of complement develop inflammation without demyelination. The role of the highly active chemotactic and anaphylactic complement-derived peptide C5a in driving inflammation and pathology in rodent models of demyelination has been little explored. Here we have used a small molecule C5a receptor antagonist, AcF-[OPdChaWR], to examine the effects of C5a receptor blockade in rat models of brain inflammation and demyelination. C5a receptor antagonist therapy completely blocked neutrophil response to C5a in vivo but had no effect on clinical disease or resultant pathology in either inflammatory or demyelinating rat models. We conclude that C5a is not required for disease induction or perpetuation in these strongly complement-dependent disease models.
Resumo:
Very few empirically validated interventions for improving metacognitive skills (i.e., self-awareness and self-regulation) and functional outcomes have been reported. This single-case experimental study presents JM, a 36-year-old man with a very severe traumatic brain injury (TBI) who demonstrated long-term awareness deficits. Treatment at four years post-injury involved a metacognitive contextual intervention based on a conceptualization of neuro-cognitive, psychological, and socio-environmental factors contributing to his awareness deficits. The 16-week intervention targeted error awareness and self-correction in two real life settings: (a) cooking at home: and (b) volunteer work. Outcome measures included behavioral observation of error behavior and standardized awareness measures. Relative to baseline performance in the cooking setting, JM demonstrated a 44% reduction in error frequency and increased self-correction. Although no spontaneous generalization was evident in the volunteer work setting, specific training in this environment led to a 39% decrease in errors. JM later gained paid employment and received brief metacognitive training in his work environment. JM's global self-knowledge of deficits assessed by self-report was unchanged after the program. Overall, the study provides preliminary support for a metacognitive contextual approach to improve error awareness and functional Outcome in real life settings.
Resumo:
Dimensionless spray flux Ψa is a dimensionless group that characterises the three most important variables in liquid dispersion: flowrate, drop size and powder flux through the spray zone. In this paper, the Poisson distribution was used to generate analytical solutions for the proportion of nuclei formed from single drops (fsingle) and the fraction of the powder surface covered by drops (fcovered) as a function of Ψa. Monte-Carlo simulations were performed to simulate the spray zone and investigate how Ψa, fsingle and fcovered are related. The Monte-Carlo data was an excellent match with analytical solutions of fcovered and fsingle as a function of Ψa. At low Ψa, the proportion of the surface covered by drops (fcovered) was equal to Ψa. As Ψa increases, drop overlap becomes more dominant and the powder surface coverage levels off. The proportion of nuclei formed from single drops (fsingle) falls exponentially with increasing Ψa. In the ranges covered, these results were independent of drop size, number of drops, drop size distribution (mono-sized, bimodal and trimodal distributions), and the uniformity of the spray. Experimental data of nuclei size distributions as a function of spray flux were fitted to the analytical solution for fsingle by defining a cutsize for single drop nuclei. The fitted cutsizes followed the spray drop sizes suggesting that the method is robust and that the cutsize does indicate the transition size between single drop and agglomerate nuclei. This demonstrates that the nuclei distribution is determined by the dimensionless spray flux and the fraction of drop controlled nuclei can be calculated analytically in advance.
Resumo:
We present experimental results for the dynamics of cold atoms in a far detuned amplitude-modulated optical standing wave. Phase-space resonances constitute distinct peaks in the atomic momentum distribution containing up to 65% of all atoms resulting from a mixed quantum chaotic phase space. We characterize the atomic behavior in classical and quantum regimes and we present the applicable quantum and classical theory, which we have developed and refined. We show experimental proof that the size and the position of the resonances in phase space can be controlled by varying several parameters, such as the modulation frequency, the scaled well depth, the modulation amplitude, and the scaled Planck’s constant of the system. We have found a surprising stability against amplitude noise. We present methods to accurately control the momentum of an ensemble of atoms using these phase-space resonances which could be used for efficient phase-space state preparation.
Resumo:
Using spontaneous parametric down-conversion, we produce polarization-entangled states of two photons and characterize them using two-photon tomography to measure the density matrix. A controllable decoherence is imposed on the states by passing the photons through thick, adjustable birefringent elements. When the system is subject to collective decoherence, one particular entangled state is seen to be decoherence-free, as predicted by theory. Such decoherence-free systems may have an important role for the future of quantum computation and information processing.
Resumo:
Using light and electron microscopic histological and immunocytochemical techniques, we investigated the effects of the glucocorticoid dexamethasone on T cell and macrophage apoptosis in the central nervous system (CNS) and peripheral nervous system (PNS) of Lewis rats with acute experimental autoimmune encephalomyelitis (EAE) induced with myelin basic protein (MBP). A single subcutaneous injection of dexamethasone markedly augmented T cell and macrophage apoptosis in the CNS and PNS and microglial apoptosis in the CNS within 6 hours (h). Pre-embedding immunolabeling revealed that dexamethasone increased the number of apoptotic CD5+ cells (T cells or activated B cells), αβ T cells, and CD11b+ cells (macrophages/microglia) in the meninges, perivascular spaces, and CNS parenchyma. The induction of increased apoptosis was dose-dependent. Daily dexamethasone treatment suppressed the neurological signs of EAE. However, the daily injection of a dose of dexamethasone (0.25 mg/kg). which, after a single dose, did not induce increased apoptosis in the CNS or PNS, was as effective in inhibiting the neurological signs of EAE as the high dose (4 mg/kg), which induced a marked increase in apoptosis. This indicates that the beneficial clinical effect of glucocorticoid therapy in EAE does not depend on the induction of increased apoptosis. The daily administration of dexamethasone for 5 days induced a relapse that commenced 5 days after cessation of treatment, with the severity of the relapse tending to increase with dexamethasone dosage.
Resumo:
Durante las últimas tres décadas el interés y diversidad en el uso de canales escalonados han aumentado debido al desarrollo de nuevas técnicas y materiales que permiten su construcción de manera rápida y económica (Concreto compactado con rodillo CCR, Gaviones, etc.). Actualmente, los canales escalonados se usan como vertedores y/o canales para peces en presas y diques, como disipadores de energía en canales y ríos, o como aireadores en plantas de tratamiento y torrentes contaminados. Diversos investigadores han estudiado el flujo en vertedores escalonados, enfocándose en estructuras de gran pendiente ( 45o) por lo que a la fecha, el comportamiento del flujo sobre vertedores con pendientes moderadas ( 15 a 30o) no ha sido totalmente comprendido. El presente artículo comprende un estudio experimental de las propiedades físicas del flujo aire-agua sobre canales escalonados con pendientes moderadas, típicas en presas de materiales sueltos. Un extenso rango de gastos en condiciones de flujo rasante se investigó en dos modelos experimentales a gran escala (Le = 3 a 6): Un canal con pendiente 3.5H:1V ( 16o) y dos alturas de escalón distintas (h = 0.1 y 0.05 m) y un canal con pendiente 2.5H:1V ( 22o) y una altura de escalón de h = 0.1 m. Los resultados incluyen un análisis detallado de las propiedades del flujo en vertedores escalonados con pendientes moderadas y un nuevo criterio de diseño hidráulico, el cual está basado en los resultados experimentales obtenidos. English abstract: Stepped chutes have been used as hydraulic structures since antiquity, they can be found acting as spillways and fish ladders in dams and weirs, as energy dissipators in artificial channels, gutters and rivers, and as aeration enhancers in water treatment plants and polluted streams. In recent years, new construction techniques and materials (Roller Compacted Concrete RCC, rip-rap gabions, etc.) together with the development of the abovementioned new applications have allowed cheaper construction methods, increasing the interest in stepped chute design. During the last three decades, research in stepped spillways has been very active. However, studies prior to 1993 neglected the effect of free-surface aeration. A number of studies have focused since on steep stepped chutes ( 45o) but the hydraulic performance of moderate-slope stepped channels is not yet totally understood. This study details an experimental investigation of physical air-water flow properties down moderate slope stepped spillways conducted in two laboratory models: the first model was a 3.15 m long stepped chute with a 15.9o slope comprising two interchangeable step heights (h = 0.1 m and h = 0.05 m); the second model was a 3.3 m long, stepped channel with a 21.8o slope (h = 0.1 m). A broad range of discharges within transition and skimming flow regimes was investigated. Measurements were conducted using a double tip conductivity probe. The study provides new, original insights into air-water stepped chute flows not foreseen in prior studies and presents a new design criterion for chutes with moderate slopes based on the experimental results.
Resumo:
A hydraulic jump is the transition from a supercritical open channel flow to a subcritical regime. It is characterised by a highly turbulent flow with macro-scale vortices, some kinetic energy dissipation and a bubbly two-phase flow structure. New air-water flow measurements were performed in hydraulic jump flows for a range of inflow Froude numbers. The experiments were conducted in a large-size facility using two types of phase-detection intrusive probes: i.e., single-tip and double-tip conductivity probes. These were complemented by some measurements of free-surface fluctuations using ultrasonic displacement meters. The present study was focused on the turbulence characteristics of hydraulic jumps with partially-developed inflow conditions. The void fraction measurements showed the presence of an advective diffusion shear layer in which the void fractions profiles matched closely an analytical solution of the advective diffusion equation for air bubbles. The present results highlighted some influence of the inflow Froude number onto the air bubble entrainment process. At the largest Froude numbers, the advected air bubbles were more thoroughly dispersed vertically, and larger amount of air bubbles were detected in the turbulent shear layer. In the air-water mixing layer, the maximum void fraction and bubble count rate data showed some longitudinal decay function in the flow direction. Such trends were previously reported in the literature. The measurements of interfacial velocity and turbulence level distributions provided new information on the turbulent velocity field in the highly-aerated shear region. The present data suggested some longitudinal decay of the turbulence intensity. The velocity profiles tended to follow a wall jet flow pattern. The air–water turbulent time and length scales were deduced from some auto- and cross-correlation analyses based upon the method of CHANSON (2006,2007). The results provided the integral turbulent time and length scales of the eddy structures advecting the air bubbles in the developing shear layer. The experimental data showed that the auto-correlation time scale Txx was larger than the transverse cross-correlation time scale Txz. The integral turbulence length scale Lxz was a function of the inflow conditions, of the streamwise position (x-x1)/d1 and vertical elevation y/d1. Herein the dimensionless integral turbulent length scale Lxz/d1 was closely related to the inflow depth: i.e., Lxz/d1 = 0.2 to 0.8, with Lxz increasing towards the free-surface. The free-surface fluctuations measurements showed large turbulent fluctuations that reflected the dynamic, unsteady structure of the hydraulic jumps. A linear relationship was found between the normalized maximum free-surface fluctuation and the inflow Froude number.
Resumo:
A hydraulic jump is characterized by strong energy dissipation and mixing, large-scale turbulence, air entrainment, waves and spray. Despite recent pertinent studies, the interaction between air bubbles diffusion and momentum transfer is not completely understood. The objective of this paper is to present experimental results from new measurements performed in rectangular horizontal flume with partially-developed inflow conditions. The vertical distributions of void fraction and air bubbles count rate were recorded for inflow Froude number Fr1 in the range from 5.2 to 14.3. Rapid detrainment process was observed near the jump toe, whereas the structure of the air diffusion layer was clearly observed over longer distances. These new data were compared with previous data generally collected at lower Froude numbers. The comparison demonstrated that, at a fixed distance from the jump toe, the maximum void fraction Cmax increases with the increasing Fr1. The vertical locations of the maximum void fraction and bubble count rate were consistent with previous studies. Finally, an empirical correlation between the upper boundary of the air diffusion layer and the distance from the impingement point was provided.
Resumo:
In high-velocity open channel flows, free-surface aeration is commonly observed. The effects of surface waves on the air-water flow properties are tested herein. The study simulates the air-water flow past a fixed-location phase-detection probe by introducing random fluctuations of the flow depth. The present model yields results that are close to experimental observations in terms of void fraction, bubble count rate and bubble/droplet chord size distributions. The results show that the surface waves have relatively little impact on the void fraction profiles, but that the bubble count rate profiles and the distributions of bubble and chord sizes are affected by the presence of surface waves.
Resumo:
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system (CNS), and is widely studied as an animal model of the human CNS demyelinating diseases, including multiple sclerosis (Raine, 1984). EAE can be induced by inoculation with whole CNS tissue, purified myelin basic protein (MBP) or myelin proteolipid protein (PLP), together with adjuvants. It may also be induced by the passive transfer of T cells specifically reactive to these myelin antigens. EAE may have either an acute or a chronic relapsing course. Acute EAE closely resembles the human disease acute disseminated encephalomyelitis, while chronic relapsing EAE resembles multiple sclerosis. EAE is also the prototype for T-cell-mediated autoimmune disease in general. This chapter will focus on the immunopathology and pathophysiology of EAE, which are the subjects of investigation in my laboratory.