22 resultados para Espacos de Sobolev
em University of Queensland eSpace - Australia
Resumo:
We consider the semilinear Schrodinger equation -Deltau+V(x)u= K(x) \u \ (2*-2 u) + g(x; u), u is an element of W-1,W-2 (R-N), where N greater than or equal to4, V, K, g are periodic in x(j) for 1 less than or equal toj less than or equal toN, K>0, g is of subcritical growth and 0 is in a gap of the spectrum of -Delta +V. We show that under suitable hypotheses this equation has a solution u not equal 0. In particular, such a solution exists if K equivalent to 1 and g equivalent to 0.
Resumo:
in this paper we investigate the solvability of the Neumann problem (1.1) involving the critical Sobolev exponents on the right-hand side of the equation and in the boundary condition. It is assumed that the coefficients Q and P are smooth. We examine the common effect of the mean curvature of the boundary a deltaOhm and the shape of the graph of the coefficients Q and P on the existence of solutions of problem (1.1). (C) 2003 Published by Elsevier Inc.
Resumo:
We consider the semilinear Schrodinger equation -Delta(A)u + V(x)u = Q(x)vertical bar u vertical bar(2* -2) u. Assuming that V changes sign, we establish the existence of a solution u not equal 0 in the Sobolev space H-A,V(1) + (R-N). The solution is obtained by a min-max type argument based on a topological linking. We also establish certain regularity properties of solutions for a rather general class of equations involving the operator -Delta(A).
Resumo:
We consider the solvability of the Neumann problem for the equation -Delta u + lambda u = 0, partial derivative u/partial derivative v = Q(x)vertical bar u vertical bar(q-2)u on partial derivative Omega, where Q is a positive and continuous coefficient on partial derivative Omega, lambda is a parameter and q = 2(N - 1)/(N - 2) is a critical Sobolev exponent for the trace embedding of H-1(Omega) into L-q(partial derivative Omega). We investigate the joint effect of the mean curvature of partial derivative Omega and the shape of the graph of Q on the existence of solutions. As a by product we establish a sharp Sobolev inequality for the trace embedding. In Section 6 we establish the existence of solutions when a parameter lambda interferes with the spectrum of -Delta with the Neumann boundary conditions. We apply a min-max principle based on the topological linking.
Resumo:
In this paper we consider the exterior Neumann problem involving a critical Sobolev exponent. We establish the existence of two solutions having a prescribed limit at infinity.
Resumo:
We investigate the effect of the coefficient of the critical nonlinearity for the Neumann problem on the existence of least energy solutions. As a by-product we establish a Sobolev inequality with interior norm.