37 resultados para Engineering structure

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A lithographic method was used to produce polycrystalline diamond films having highly defined surface geometry, showing an array of diamond tips for possible application as a field emitter device. The films grown in this study used microwave plasma assisted chemical vapour deposition (MACVD) on a silicon substrate; the substrate was then dissolved away to reveal the surface features on the diamond film. It is possible to align the crystallite direction and affect the electron emission properties using a voltage bias to enhance the nucleation process and influence the nuclei to a preferred orientation. This study focuses on the identification of the distribution of crystal directions in the film, using electron backscattering diffraction (EBSD) to identify the crystallographic character of the film surface. EBSD allows direct examination of the individual diamond grains, grains boundaries and the crystal orientation of each individual crystallite. The EBSD maps of the bottom (nucleation side) of the films, following which a layer of film is ion-milled away and the mapping process repeated. The method demonstrates experimentally that oriented nucleation occurs and the thin sections allow the crystal texture to be reconstructed in 3-D. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microstructural and optical properties of InAs-inserted and reference single GaAsN/GaAs quantum-well (QW) structures grown by metalorganic chemical vapor deposition were investigated using cross-sectional transmission electron microscopy and photoluminescence (PL). Significant enhancement of PL intensity and a blueshift of PL emission were observed from the InAs-inserted GaAsN/GaAs QW structure, compared with the single GaAsN/GaAs QW structure. Strain compensation and In-induced reduction of N incorporation are suggested to be two major factors affecting the optical properties. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a strong, active granular sludge bed is necessary for optimal operation of upflow anaerobic sludge blanket reactors. The microbial and mechanical structure of the granules may have a strong influence on desirable properties such as growth rate, settling velocity and shear strength. Theories have been proposed for granule microbial structure based on the relative kinetics of substrate degradation, but contradict some observations from both modelling and microscopic studies. In this paper, the structures of four granule types were examined from full-scale UASB reactors, treating wastewater from a cannery, a slaughterhouse, and two breweries. Microbial structure was determined using fluorescence in situ hybridisation probing with 16S rRNA-directed oligonucleotide probes, and superficial structure and microbial density (volume occupied by cells and microbial debris) assessed using scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The granules were also modelled using a distributed parameter biofilm model, with a previously published biochemical model structure, biofilm modelling approach, and model parameters. The model results reflected the trophic structures observed, indicating that the structures were possibly determined by kinetics. Of particular interest were results from simulations of the protein grown granules, which were predicted to have slow growth rates, low microbial density, and no trophic layers, the last two of which were reflected by microscopic observations. The primary cause of this structure, as assessed by modelling, was the particulate nature of the wastewater, and the slow rate of particulate hydrolysis, rather than the presence of proteins in the wastewater. Because solids hydrolysis was rate limiting, soluble substrate concentrations were very low (below Monod half saturation concentration), which caused low growth rates. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper highlights the importance of design expertise, for designing liquid retaining structures, including subjective judgments and professional experience. Design of liquid retaining structures has special features different from the others. Being more vulnerable to corrosion problem, they have stringent requirements against serviceability limit state of crack. It is the premise of the study to transferring expert knowledge in a computerized blackboard system. Hybrid knowledge representation schemes, including production rules, object-oriented programming, and procedural methods, are employed to express engineering heuristics and standard design knowledge during the development of the knowledge-based system (KBS) for design of liquid retaining structures. This approach renders it possible to take advantages of the characteristics of each method. The system can provide the user with advice on preliminary design, loading specification, optimized configuration selection and detailed design analysis of liquid retaining structure. It would be beneficial to the field of retaining structure design by focusing on the acquisition and organization of expert knowledge through the development of recent artificial intelligence technology. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conotoxins (CTXs), with their exquisite specificity and potency, have recently created much excitement as drug leads. However, like most peptides, their beneficial activities may potentially be undermined by susceptibility to proteolysis in vivo. By cyclizing the alpha-CTX MII by using a range of linkers, we have engineered peptides that preserve their full activity but have greatly improved resistance to proteolytic degradation. The cyclic MII analogue containing a seven-residue linker joining the N and C termini was as active and selective as the native peptide for native and recombinant neuronal nicotinic acetylcholine receptor subtypes present in bovine chromaffin cells and expressed in Xerl oocytes, respectively. Furthermore, its resistance to proteolysis against a specific protease and in human plasma was significantly improved. More generally, to our knowledge, this report is the first on the cyclization of disulfide-rich toxins. Cyclization strategies represent an approach for stabilizing bioactive peptides while keeping their full potencies and should boost applications of peptide-based drugs in human medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorption of pure nitrogen, argon, acetone, chloroform and acetone-chloroform mixture on graphitized thermal carbon black is considered at sub-critical conditions by means of molecular layer structure theory (MLST). In the present version of the MLST an adsorbed fluid is considered as a sequence of 2D molecular layers, whose Helmholtz free energies are obtained directly from the analysis of experimental adsorption isotherm of pure components. The interaction of the nearest layers is accounted for in the framework of mean field approximation. This approach allows quantitative correlating of experimental nitrogen and argon adsorption isotherm both in the monolayer region and in the range of multi-layer coverage up to 10 molecular layers. In the case of acetone and chloroform the approach also leads to excellent quantitative correlation of adsorption isotherms, while molecular approaches such as the non-local density functional theory (NLDFT) fail to describe those isotherms. We extend our new method to calculate the Helmholtz free energy of an adsorbed mixture using a simple mixing rule, and this allows us to predict mixture adsorption isotherms from pure component adsorption isotherms. The approach, which accounts for the difference in composition in different molecular layers, is tested against the experimental data of acetone-chloroform mixture (non-ideal mixture) adsorption on graphitized thermal carbon black at 50 degrees C. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semisolid metal forming has now been accepted as a viable technology for production of components with complex shape and high integrity. The advantages of semisolid metal forming can only be achieved when the feedstock material has a non-dendritic semisolid structure. A controlled nucleation method has been developed to produce such structures for semisolid forming. By controlling grain nucleation and growth, fine-grained and non-dendritic microstructures that are suitable for semisolid casting can be generated. The method was applied to hypoeutectic and hypereutectic Al-Si casting alloys, Al wrought alloys and a Mg alloy. Parameters such as pouring temperature, cooling rate and grain refiner addition were controlled to achieve copious nucleation, nuclei survival and dendritic growth suppression during solidification. The influences of the controlling parameters on the formation of semisolid structure were different for each of these alloy groups. The as-cast structures were then partially remelted and isothermally held. Semisolid structures were developed and followed by semisolid casting into a stepped die.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The addition of small quantities (similar to 5 wt pct) layered silicates into polymer materials has the potential to greatly increase the modulus without adversely affecting the toughness or processability of the composite. The effect of microstructural features in the polymer nanocomposite and their possible effects on the mechanical properties with particular reference to linear low density polyethylene (LLDPE)/montmorillonite nanocomposites was discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Owing to the high degree of vulnerability of liquid retaining structures to corrosion problems, there are stringent requirements in its design against cracking. In this paper, a prototype knowledge-based system is developed and implemented for the design of liquid retaining structures based on the blackboard architecture. A commercially available expert system shell VISUAL RULE STUDIO working as an ActiveX Designer under the VISUAL BASIC programming environment is employed. Hybrid knowledge representation approach with production rules and procedural methods under object-oriented programming are used to represent the engineering heuristics and design knowledge of this domain. It is demonstrated that the blackboard architecture is capable of integrating different knowledge together in an effective manner. The system is tailored to give advice to users regarding preliminary design, loading specification and optimized configuration selection of this type of structure. An example of application is given to illustrate the capabilities of the prototype system in transferring knowledge on liquid retaining structure to novice engineers. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an ongoing collaboration between Boeing Australia Limited and the University of Queensland to develop and deliver an introductory course on software engineering. The aims of the course are to provide a common understanding of the nature of software engineering for all Boeing Australia's engineering staff, and to ensure they understand the practices used throughout the company. The course is designed so that it can be presented to people with varying backgrounds, such as recent software engineering graduates, systems engineers, quality assurance personnel, etc. The paper describes the structure and content of the course, and the evaluation techniques used to collect feedback from the participants and the corresponding results. The immediate feedback on the course indicates that it has been well received by the participants, but also indicates a need for more advanced courses in specific areas. The long-term feedback from participants is less positive, and the long-term feedback from the managers of the course participants indicates a need to expand on the coverage of the Boeing-specific processes and methods. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the interfacial interactions between the nanofiller and polymer matrix is important to improve the design and manufacture of polymer nanocomposites. This paper reports a molecular dynamic Study on the interfacial interactions and structure of a clay-based polyurethane intercalated nanocomposite. The results show that the intercalation of surfactant (i.e. dioctadecyldlmethyl ammonium) and polyurethane (PU) into the nanoconfined gallery of clay leads to the multilayer structure for both surfactant and PU, and the absence of phase separation for PU chains. Such structural characteristics are attributed to the result of competitive interactions among the surfactant, PU and the clay surface, including van der Waals, electrostatic and hydrogen bonding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely accepted that cellulose is the rate-limiting substrate in the anaerobic digestion of organic solid wastes and that cellulose solubilisation is largely mediated by surface attached bacteria. However, little is known about the identity or the ecophysiology of cellulolytic microorganisms from landfills and anaerobic digesters. The aim of this study was to investigate an enriched cellulolytic microbial community from an anaerobic batch reactor. Chemical oxygen demand balancing was used to calculate the cellulose solubilisation rate and the degree of cellulose solubilisation. Fluorescence in situ hybridisation (FISH) was used to assess the relative abundance and physical location of three groups of bacteria belonging to the Clostridium lineage of the Firmicutes that have been implicated as the dominant cellulose degraders in this system. Quantitation of the relative abundance using FISH showed that there were changes in the microbial community structure throughout the digestion. However, comparison of these results to the process data reveals that these changes had no impact on the cellulose solubilisation in the reactor. The rate of cellulose solubilisation was approximately stable for much of the digestion despite changes in the cellulolytic population. The solubilisation rate appears to be most strongly affected by the rate of surface area colonisation and the biofilm architecture with the accepted model of first order kinetics due to surface area limitation applying only when the cellulose particles are fully covered with a thin layer of cells. (c) 2005 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A broad review of technologically focused work concerning biomolecules at interfaces is presented. The emphasis is on developments in interfacial biomolecular engineering that may have a practical impact in bioanalysis, tissue engineering, emulsion processing or bioseparations. We also review methods for fabrication in an attempt to draw out those approaches that may be useful for product manufacture, and briefly review methods for analysing the resulting interfacial nanostructures. From this review we conclude that the generation of knowledge and-innovation at the nanoscale far exceeds our ability to translate this innovation into practical outcomes addressing a market need, and that significant technological challenges exist. A particular challenge in this translation is to understand how the structural properties of biomolecules control the assembled architecture, which in turn defines product performance, and how this relationship is affected by the chosen manufacturing route. This structure-architecture-process-performance (SAPP) interaction problem is the familiar laboratory scale-up challenge in disguise. A further challenge will be to interpret biomolecular self- and directed-assembly reactions using tools of chemical reaction engineering, enabling rigorous manufacturing optimization of self-assembly laboratory techniques. We conclude that many of the technological problems facing this field are addressable using tools of modem chemical and biomolecular engineering, in conjunction with knowledge and skills from the underpinning sciences. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach is developed to analyze the thermodynamic properties of a sub-critical fluid adsorbed in a slit pore of activated carbon. The approach is based on a representation that an adsorbed fluid forms an ordered structure close to a smoothed solid surface. This ordered structure is modelled as a collection of parallel molecular layers. Such a structure allows us to express the Helmholtz free energy of a molecular layer as the sum of the intrinsic Helmholtz free energy specific to that layer and the potential energy of interaction of that layer with all other layers and the solid surface. The intrinsic Helmholtz free energy of a molecular layer is a function (at given temperature) of its two-dimensional density and it can be readily obtained from bulk-phase properties, while the interlayer potential energy interaction is determined by using the 10-4 Lennard-Jones potential. The positions of all layers close to the graphite surface or in a slit pore are considered to correspond to the minimum of the potential energy of the system. This model has led to accurate predictions of nitrogen and argon adsorption on carbon black at their normal boiling points. In the case of adsorption in slit pores, local isotherms are determined from the minimization of the grand potential. The model provides a reasonable description of the 0-1 monolayer transition, phase transition and packing effect. The adsorption of nitrogen at 77.35 K and argon at 87.29 K on activated carbons is analyzed to illustrate the potential of this theory, and the derived pore-size distribution is compared favourably with that obtained by the Density Functional Theory (DFT). The model is less time-consuming than methods such as the DFT and Monte-Carlo simulation, and most importantly it can be readily extended to the adsorption of mixtures and capillary condensation phenomena.