22 resultados para Embryo reconstruction
em University of Queensland eSpace - Australia
Resumo:
The cut gene of Drosophila melanogaster is an identity selector gene that establishes the program of development and differentiation of external sense organs. Mutations in the cut gene cause a transformation of the external sense organs into chordotonal organs, originally assessed by the use of immunostaining methods [Bodmer et al. (1987): Cell, 51:293-307]. Because of evidence that axonal projections of the transformed neurons within the central nervous system are not completely switched in cut mutants, the transformation of the four cells making up a sense organ was reassessed using single-cell staining with fluorescent dye and differential interface contrast (DIC) microscopy of the embryo and larva. The results provide strong evidence that all cells of the sense organs are completely transformed, exhibiting the morphologies and organelles characteristic of chordotonal sense organs. A comparison of the structures of external sense organs and chordotonal organs indicates that a number of the differences could be due to the degree of development of common structures, and that cut or downstream genes modulate effector genes that are normally utilized in both receptor types. The possible derivation of insect chordotonal and external sense organs from a receptor type found in crustaceans is discussed in the light of arthropod phylogenetics and the molecular genetics of sense organ development. (C) 1997 Wiley-Liss, Inc.
Resumo:
S100A8 (also known as CP10 or MRP8) was the first member of the S100 family of calcium-binding proteins shown to be chemotactic for myeloid cells. The gene is expressed together with its dimerization partner S100A9 during myelopoiesis in the fetal liver and in adult bone marrow as well as in mature granulocytes. In this paper we show that S100A8 mRNA is expressed without S100A9 mRNA between 6.5 and 8.5 days postcoitum within fetal cells infiltrating the deciduum in the vicinity of the ectoplacental cone. Targeted disruption of the S100A8 gene caused rapid and synchronous embryo resorption by day 9.5 of development in 100% of homozygous null embryos. Until this point there was no evidence of developmental delay in S100A8(-/-) embryos and decidualization was normal. The results of PCR genotyping around 7.5-8.5 days postcoitum suggest that the null embryos are infiltrated with maternal cells before overt signs of resorption. This work is the first evidence for nonredundant function of a member of the S100 gene family and implies a role in prevention of maternal rejection of the implanting embryo. The S100A8 null provides a new model for studying fetal-maternal interactions during implantation.
Resumo:
Sensory axons of different sensory modalities project into typical domains within insect ganglia. Tactile and gustatory axons project into a ventral layer of neuropil and proprioceptive afferents, including chordotonal axone, into an intermediate or dorsal layer. Here, we describe the central projections of sensory neurons in the first instar Drosophila larva, relating them to the projection of the same sensory afferents in the embryo and to sensory afferents of similar type in other insects. Several neurons show marked morphologic changes in their axon terminals in the transition between the embryo and larva. During a short morphogenetic period late in embryogenesis, the axon terminals of the dorsal bipolar dendrite stretch receptor change their shape and their distribution within the neuromere. In the larva, external sense organ neurons (es) project their axons into a ventral layer of neuropil. Chordotonal sensory neurons (ch) project into a slightly more dorsal region that is comparable to their projection in adults. The multiple dendrite (md) neurons show two distinctive classes of projection. One group of md neurons projects into the ventral-most neuropil region, the same region into which es neurons project. Members of this group are related by lineage to es neurons or share a requirement for expression of the same proneural gene during development. Other md neurons project into a more dorsal region. Sensory receptors projecting into dorsal neuropil possibly provide proprioceptive feedback from the periphery to central motorneurons and are candidates for future genetic and cellular analysis of simple neural circuitry. J. Comp. Neurol. 425:34-44, 2000. (C) 2000 Wiley-Liss, Inc.
Resumo:
Axial X-ray Computed tomography (CT) scanning provides a convenient means of recording the three-dimensional form of soil structure. The technique has been used for nearly two decades, but initial development has concentrated on qualitative description of images. More recently, increasing effort has been put into quantifying the geometry and topology of macropores likely to contribute to preferential now in soils. Here we describe a novel technique for tracing connected macropores in the CT scans. After object extraction, three-dimensional mathematical morphological filters are applied to quantify the reconstructed structure. These filters consist of sequences of so-called erosions and/or dilations of a 32-face structuring element to describe object distances and volumes of influence. The tracing and quantification methodologies were tested on a set of undisturbed soil cores collected in a Swiss pre-alpine meadow, where a new earthworm species (Aporrectodea nocturna) was accidentally introduced. Given the reduced number of samples analysed in this study, the results presented only illustrate the potential of the method to reconstruct and quantify macropores. Our results suggest that the introduction of the new species induced very limited chance to the soil structured for example, no difference in total macropore length or mean diameter was observed. However. in the zone colonised by, the new species. individual macropores tended to have a longer average length. be more vertical and be further apart at some depth. Overall, the approach proved well suited to the analysis of the three-dimensional architecture of macropores. It provides a framework for the analysis of complex structures, which are less satisfactorily observed and described using 2D imaging. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In 2007 Associate Professor Jay Hall retires from the University of Queensland after more than 30 years of service to the Australian archaeological community. Celebrated as a gifted teacher and a pioneer of Queensland archaeology, Jay leaves a rich legacy of scholarship and achievement across a wide range of archaeological endeavours. An Archæological Life brings together past and present students, colleagues and friends to celebrate Jay’s contributions, influences and interests.
Resumo:
FAM is a developmentally regulated substrate-specific deubiquitylating enzyme. It binds the cell adhesion and signalling molecules beta -catenin and A-F-6 in vitro, and stabilises both in mammalian cell culture. To determine if FAM is required at the earliest stages of mouse development we examined its expression and function in preimplantation mouse embryos. FAM is expressed at all stages of preimplantation development from ovulation to implantation. Exposure of two-cell embryos to FAM-specific antisense, but not sense, oligodeoxynucleotides resulted in depletion of the FAM protein and failure Of the embryos to develop to blastocysts. Loss of FAM had two physiological effects, namely, a decrease in cleavage rate and an inhibition of cell adhesive events. Depletion of FAM protein was mirrored by a loss of beta -catenin such that very little of either protein remained following 72 h culture. The residual beta -catenin was localised to sites of cell-cell contact suggesting that the cytoplasmic pool of beta -catenin is stabilised by FAM. Although AF-6 levels initially decreased they returned to normal. However, the nascent protein was mislocalised at the apical surface of blastomeres. Therefore FAM is required for preimplantation mouse embryo development and regulates beta -catenin and AF-6 in vivo. (C) 2001 Elsevier Science Ireland Lid. All rights reserved.
Resumo:
This study assessed the quadriceps and hamstring strength before and 6 months after anterior cruciate ligament (ACL) reconstructive surgery using the hamstrings and related the findings to functional performance. Six months after surgery is a critical time for assessment as this is when players are returning to sport. Maximum isokinetic strength of 31 patients with complete unilateral ACL ruptures was measured at speeds of 60 degrees and 120 degrees per second. Functional assessment included the single hop, the triple hop, the shuttle run, side-step and carioca tests. All patients underwent a controlled quadriceps emphasized home-based physiotherapy program both before and after surgery. Results show that before surgery there was a 7.3% quadriceps strength deficit at 60 degrees per second compared to the uninjured leg but no hamstring strength deficit. After surgery there was a statistically significant but relatively small loss of muscle strength. The quadriceps strength deficit had increased to 12% and there was a 10% hamstring deficit. Post-operatively there was an 11% and 6.3% improvement in the hop tests, a 9% (P < 0.01) improvement in the shuttle run, a 15% (P < 0.001) improvement in the side step and a 24% (P < 0.001) improvement in the carioca tests (P < 0.001) despite the loss of muscle strength. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Hermeneutic Case Reconstruction (Rosenthal, 1993) is a systematic method of analysing biographical self-presentations from an interpretivist perspective. The method consists of five major analytic steps. The first is an analysis of the biographical data that can stand independently of the narrator’s perspective. Objective data is extracted from the text or interview transcript and ordered chronologically. Secondly, a thematic field analysis is undertaken in which the data is divided into separate units according to the type of text used, whilst keeping the sequence of these texts units intact. In this step, hypotheses are developed regarding the potential significance of the style and sequence of the events presented. The product of this second step is a reconstruction of the life story. A reconstruction of the life history then follows as the third step. The purpose of this step is to generate hypotheses about the meanings that biographical experiences might have had for the narrator at the time they occurred, given the sociocultural context in which they occurred. In the fourth step, microanalysis of individual text segments is undertaken, in which all hypotheses generated in the earlier steps are tested against the text for support or refutation. The final step consists of a contrastive comparison of the life history and life story. The life story and life history are compared to determine, for example, which aspects of the narrator’s experience have been emphasised or minimised. Through this comparison, the selective process is highlighted. This is referred to as the case structure. This paper describes an application of this method to a published first-person narrative of a woman’s experiences of sustaining a brain injury in a motor vehicle accident.
Resumo:
Articulatory patterns and nasal resonance were assessed before and 6 months after orthognathic reconstruction surgery in five patients with dentofacial deformities. Perceptual and physiological assessments showed disorders of nasality and articulatory function preoperatively, two patients being hyponasal, and one hypernasal. Four patients had mild articulatory deficits, and four had reduced maximal lip or tongue pressures. Operation resulted in different patterns of change. Nasality deteriorated in three patients and articulatory precision and intelligibility improved in only one patient and showed no change in the other four. Operation improved interlabial pressures in three patients, while its impact on tongue pressures varied, being improved in one case, deteriorating in one, and remaining unchanged in the other three. The variability in the results highlights the need for routine assessment of speech and resonance before and after orthognathic reconstruction. (C) 2002 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
In New Zealand, the turn from the welfare state since 1984 to a global market driven economy in the early mid 1990s has affected the way that primary curriculum documents have been developed and implemented. Those documents, together with teachers’ handbooks, have in turn affected the way that teachers teach. In particular, the construction of literacy and what constitutes literacy teaching in these documents have affected teachers’ work and have also constructed and are reconstructing childhood and the child literate. The way that teachers teach literacy depends on their constructions of children and childhood and that as their views of childhood and children change, so too do their views of the teaching of literacy. Against this background of locating childhood and children in educational and literacy discourses, other discourses of new technologies, cultural diversity, time and space of “new times” are also challenging the construction of literacy, the literate child and childhood.
Resumo:
The choice of genotyping families vs unrelated individuals is a critical factor in any large-scale linkage disequilibrium (LD) study. The use of unrelated individuals for such studies is promising, but in contrast to family designs, unrelated samples do not facilitate detection of genotyping errors, which have been shown to be of great importance for LD and linkage studies and may be even more important in genotyping collaborations across laboratories. Here we employ some of the most commonly-used analysis methods to examine the relative accuracy of haplotype estimation using families vs unrelateds in the presence of genotyping error. The results suggest that even slight amounts of genotyping error can significantly decrease haplotype frequency and reconstruction accuracy, that the ability to detect such errors in large families is essential when the number/complexity of haplotypes is high (low LD/common alleles). In contrast, in situations of low haplotype complexity (high LD and/or many rare alleles) unrelated individuals offer such a high degree of accuracy that there is little reason for less efficient family designs. Moreover, parent-child trios, which comprise the most popular family design and the most efficient in terms of the number of founder chromosomes per genotype but which contain little information for error detection, offer little or no gain over unrelated samples in nearly all cases, and thus do not seem a useful sampling compromise between unrelated individuals and large families. The implications of these results are discussed in the context of large-scale LD mapping projects such as the proposed genome-wide haplotype map.