105 resultados para Egg Size

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Life histories are generally assumed to evolve via antagonistic pleiotropy (negative genetic correlations) among traits, and trade-offs between life-history traits are typically studied using either phenotypic manipulations or selection experiments. We investigated the trade-off between egg size and fecundity in Drosophila melanogaster by examining both the phenotypic and genetic relationships between these traits after artificial selection for large and small eggs, relative to female body size. Egg size responded strongly to selection in both directions, increasing in the large-egg selected lines and decreasing in the small-egg selected lines. Phenotypic correlations between egg size and fecundity in the large-egg selected lines were negative, but no relationship between these traits occurred in either the control or small-egg selected lines. There was no negative genetic correlation between egg size and fecundity. Total reproductive allocation decreased in the small-egg selected lines but did not increase in the large-egg lines. Our results have three implications. First, our selection procedure may have forced females selected for large eggs into a physiological trade-off not reflected in a negative genetic correlation between these traits. Second, the lack of a negative genetic correlation between egg size and number suggests that the phenotypic trade-off frequently observed between egg size and number in other organisms may not evolve over the short term via a direct genetic trade-off whereby increases in egg size are automatically accompanied by decreased fecundity. Finally, total reproductive allocation may not evolve independently of egg size as commonly assumed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been growing interest in the effects of variation in larval quality on the post-larval performance of adult marine invertebrates. Variation in egg/larval size is an obvious source of variation in larval quality but sources of variation have received little attention. For broadcast spawners, larval size may vary according to the local sperm environment but the generality of this result is unclear. Here, we show that, for a solitary ascidian, a polychaete and an echinoid, larval size is affected by the concentration of sperm present during fertilization. Larvae that are produced at high sperm concentrations are smaller than larvae that are produced from eggs exposed to low sperm concentrations. We also show that for three ascidians and an asteroid, egg size increases with maternal body size. These differences in larval size are likely to affect larval and subsequent adult performance in the field. Given that sperm concentrations in the field can fluctuate widely, it is likely that larval quality in free-spawning marine invertebrates will also vary widely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipid, protein, ash, carbohydrate and water content and energy density of eggs were measured from different clutches over a range of egg size in two species of freshwater turtle. Dry egg contents consisted of protein (54-60%), lipid (25-31%) and ash (5-6%) while carbohydrate was found to be negligible (

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fertilisation of eggs of free-spawning marine invertebrates depends on factors affecting sperm concentration in the field and also on gamete characteristics such as egg size. In the free-spawning intertidal ascidian Pyura stolonifera mean egg size increased with maternal size in 2 separate populations. The largest ascidian produced eggs that were, on average, 50% greater in volume than the eggs produced by the smallest individual studied. There was no evidence to suggest that egg density varied with adult size and egg dry organic weight increased with maternal size. The fertilisation kinetics of this species were strongly affected by the variation in egg size, with the eggs of large individuals requiring much less concentrated sperm to achieve maximal levels of fertilisation success than the eggs of small individuals. We suggest that variation in egg size between individuals of different sizes and ages may be an important factor in determining fertilisation success for ascidians of this species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For many species of marine invertebrates, variability in larval settlement behaviour appears to be the rule rather than the exception. This variability has the potential to affect larval dispersal, because settlement behaviour will influence the length of time larvae are in the plankton. Despite the ubiquity and importance of this variability, relatively few sources of variation in larval settlement behaviour have been identified. One important factor that can affect larval settlement behaviour is the nutritional state of larvae. Non-feeding larvae often become less discriminating in their 'choice' of settlement substrate, i.e. more desperate to settle, when energetic reserves run low. We tested whether variation in larval size (and presumably in nutritional reserves) also affects the settlement behaviour of 3 species of colonial marine invertebrate larvae, the bryozoans Bugula neritina and Watersipora subtorquata and the ascidian Diplosoma listerianum. For all 3 species, larger larvae delayed settlement for longer in the absence of settlement cues, and settlement of Bugula neritina larvae was accelerated by the presence of settlement cues, independently of larval size. In the field, larger W subtorquata larvae also took longer to settle than smaller larvae and were more discriminating towards settlement surfaces. These differences in settlement time are likely to result in differences in the distance that larvae disperse in the field. We suggest that species that produce non-feeding larvae can affect the dispersal potential of their offspring by manipulating larval size and thus larval desperation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Effects of variation in larval quality on post-metamorphic performance in marine invertebrates are increasingly apparent. Recently, it has been shown that variation in offspring size can also strongly affect post-settlement survival, but variation in environmental conditions can mediate this effect. The quality of habitat into which marine invertebrate larvae settle can vary markedly, and 1 influence on quality is the number of conspecifics present. We tested the effects of settler size and settler density on early (1 wk after settlement) post-settlement survival in the field for the solitary ascidian Ciona intestinalis. Larger settlers survived better than smaller settlers, within and among groups of siblings. Increases in the density of settlers decreased survival, but the density-dependent effects were much stronger for smaller settlers. We suggest that larger settlers are better able to cope with intra-specific competition because they have greater energetic reserves or a greater capacity to feed than smaller settlers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The positive relationship between offspring size and offspring fitness is a fundamental assumption of life-history theory, but it has received relatively little attention in the marine environment. This is surprising given that substantial intraspecific variation in offspring size is common in marine organisms and there are clear links between larval experience and adult performance. The metamorphosis of most marine invertebrates does not represent a newbeginning, and larval experiences can have effects that carry over to juvenile survival and growth. We show that larval size can have equally important carryover effects in a colonial marine invertebrate. In the bryozoan Bugula neritina, the size of the non-feeding larvae has a prolonged effect on colony performance after metamorphosis. Colonies that came from larger larvae survived better, grew faster, and reproduced sooner or produced more embryos than colonies that came from smaller larvae. These effects crossed generations, with colonies from larger larvae themselves producing larger larvae. These effects were found in two populations (in Australia and in the United States) in contrasting habitats.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Variation in larval size has been shown to be an important factor for the post-metamorphic performance of marine invertebrates but, despite its importance, few sources of this variation have been identified. For a range of taxa, offspring size is positively correlated with maternal size but the reasons for this correlation remain unclear. We halved the size of colonies in the bryozoan Bugula neritina 1 wk prior to reproduction (but during embryogenesis) to determine if larval size is a fixed or plastic trait. We manipulated colonies in such a way that the ratio of feeding zooids to reproductive zooids was constant between treatment and control colonies. We found that manipulating colony size strongly affects larval size; halved colonies produced larvae that were similar to13% smaller than those produced by intact colonies. We entered these data into a simple model based on previous work to estimate the likely post-metamorphic consequences of this reduction in larval size. The model predicted that larvae that came from manipulated colonies would suffer similar to300% higher post-metamorphic mortality and similar to50% lower fecundity as adults. Colonies that are faced with a stress appear to be trading off current offspring fitness to maximize their own long-term fitness and this may explain previous observations of compensatory growth in colonial organisms. This study demonstrates that larval size is a surprisingly dynamic trait and strong links exist between the maternal phenotype and the fitness of the offspring. The performance of settling larvae may be determined not only by their larval experience but also by the experience of their mothers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mating order can have important consequences for the fertilization success of males whose ejaculates compete to fertilize a clutch of eggs. Despite an excellent body of literature on mating-order effects in many animals, they have rarely been considered in marine free-spawning invertebrates, where both sexes release gametes into the water column. In this study, we show that in such organisms, mating order can have profound repercussions for male reproductive success. Using in vitro fertilization for two species of sea urchin we found that the 'fertilization history' of a clutch of eggs strongly influenced the size distribution of unfertilized eggs, and consequently the likelihood that they will be fertilized. Males that had first access to a batch of eggs enjoyed elevated fertilization success because they had privileged access to the largest and therefore most readily fertilizable eggs within a clutch. By contrast, when a male's sperm were exposed to a batch of unfertilized eggs left over from a previous mating event, fertilization rates were reduced, owing to smaller eggs remaining in egg clutches previously exposed to sperm. Because of this size-dependent fertilization, the fertilization history of eggs also strongly influenced the size distribution of offspring, with first-spawning males producing larger, and therefore fitter, offspring. These findings suggest that when there is variation in egg size, mating order will influence not only the quantity but also the quality of offspring sired by competing males.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Larval quality may be capable of explaining much of the variation in the recruitment and subsequent population dynamics of benthic marine invertebrates. Whilst the effects of larval nutritional condition on adult performance have received the most attention, recent work has shown that larval size may also be an important and ubiquitous source of variation in larval quality. We examined the effects of variation in larval size on the post-metamorphic survival and growth of Watersipora subtorquata in 2 very different habitats - experimental substrata and pier pilings. We found strong effects of larval size on colony performance, although these varied among experiments. For colonies on experimental substrata, larval size positively affected adult survival and, initially, growth. However, after 3 wk in the field, there was no relationship between larval size and colony size, possibly because colonies were completely surrounded by newly settled organisms. Larval size also positively affected post-metamorphic growth of colonies on pier pilings, but, surprisingly, colonies that came from larger larvae had lower survival than colonies from smaller larvae. Overall, variation in larval size will strongly affect the recruitment and subsequent performance of adults in this species, although this may vary among different habitats. This study highlights the importance of examining the effects of larval quality on adult performance in as realistic conditions as possible, because of the strong interaction between larval size effects and the environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Offspring size is thought to strongly affect offspring fitness and many studies have shown strong offspring size/fitness relationships in marine and terrestrial organisms. This relationship is strongly mitigated by local environmental conditions and the optimal offspring size that mothers should produce will vary among different environments. It is assumed that offspring size will consistently affect the same traits among populations but this assumption has not been tested. Here I use a common garden experiment to examine the effects of offspring size on subsequent performance for the marine bryozoan Bugula neritina using larvae from two very different populations. The local conditions at one population (Williamstown) favour early reproduction whereas the other population (Pt. Wilson) favours early growth. Despite being placed in the same habitat, the effects of parental larval size were extremely variable and crossed generations. For larvae from Williamstown, parental larval size positively affected initial colony growth and larval size in the next generation. For larvae from the other population, parental larval size positively affected colony fecundity and negatively affected larval size in the next generation. Traditionally, exogenous factors have been viewed as the sole source of variation in offspring size/fitness relationship but these results show that endogenous factors (maternal source population) can also cause variation in this crucial relationship. It appears offspring size effects can be highly variable among populations and organisms can adapt to local conditions without changing the size of their offspring.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A central tenet of life-history theory is the presence of a trade-off between the size and number of offspring that a female can produce for a given clutch. A crucial assumption of this trade-off is that larger offspring perform better than smaller offspring. Despite the importance of this assumption empirical, field-based tests are rare, especially for marine organisms. We tested this assumption for the marine invertebrate, Diplosoma listerianum, a colonial ascidian that commonly occurs in temperate marine communities. Colonies that came from larger larvae had larger feeding structures than colonies that came from smaller larvae. Colonies that came from larger larvae also had higher survival and growth after 2 weeks in the field than colonies that came from smaller larvae. However, after 3 weeks in the field the colonies began to fragment and we could not detect an effect of larval size. We suggest that offspring size can have strong effects on the initial recruitment of D. listerianum but because of the tendency of this species to fragment, offspring size effects are less persistent in this species than in others.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

When the availability of sperm limits female reproductive success, competition for sperm, may be an important broker of sexual selection. This is because sperm limitation can increase the variance in female reproductive success, resulting in strong selection on females to compete for limited fertilization opportunities. Sperm limitation is probably common in broadcast-spawning marine invertebrates, making these excellent candidates for investigating scramble competition between broods of eggs and its consequences for female reproductive success. Here, we report our findings from a series of experiments that investigate egg competition in the sessile, broadcast-spawning polychaete Galeolaria caespitosa. We initially tested whether the order in which eggs encounter sperm affects their fertilization success at two ecologically relevant current regimes. We used a split-clutch-split-ejaculate technique to compare the fertilization success of eggs from individual females that had either first access (competition-free treatment) or second access (egg competition treatment) to a batch of sperm. We found that fertilization success depended on the order in which eggs accessed sperm; eggs that were assigned to the competition-free treatment exhibited significantly higher fertilization rates than those assigned to the egg competition treatment at both current speeds. In subsequent experiments we found that prior exposure of sperm to eggs significantly reduced both the quantity and quality of sperm available to fertilize a second clutch of eggs, resulting in reductions in fertilization success at high and low sperm concentrations. These findings suggest that female traits that increase the likelihood of sperm-egg interactions (e.g. egg size) will respond to selection imposed by egg competition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the past 30 years, numerous attempts to understand the relationship between offspring size and fitness have been made, and it has become clear that this critical relationship is strongly affected by environmental heterogeneity. For marine invertebrates, there has been a long-standing interest in the evolution of offspring size, but there have been very few empirical and theoretical examinations of post-metamorphic offspring size effects, and almost none have considered the effect of environmental heterogeneity on the offspring size/fitness relationship. We investigated the post-metamorphic effects of offspring size in the field for the colonial marine invertebrate Botrylloides violaceus. We also examined how the relationship between offspring size and performance was affected by three different types of intraspecific competition. We found strong and persistent effects of offspring size on survival and growth, but these effects depended on the level and type of intraspecific competition.. Generally, competition strengthened the advantages of increasing maternal investment. Interestingly, we found that offspring size determined the outcome of competitive interaction: juveniles that had more maternal investment were more likely to encroach on another juvenile's territory. This suggests that mothers have the previously unrecognized potential to influence the outcome of competitive interactions in benthic marine invertebrates. We created a simple optimality model, which utilized the data generated from our field experiments, and found that increasing intraspecific competition resulted in an increase,in predicted optimal size. Our results suggest that the relationship between offspring size and fitness is highly variable in the marine environment and strongly dependent on the density of conspecifics.