3 resultados para EXPERIMENTAL REALIZATION

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We review the field of quantum optical information from elementary considerations to quantum computation schemes. We illustrate our discussion with descriptions of experimental demonstrations of key communication and processing tasks from the last decade and also look forward to the key results likely in the next decade. We examine both discrete (single photon) type processing as well as those which employ continuous variable manipulations. The mathematical formalism is kept to the minimum needed to understand the key theoretical and experimental results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using only linear interactions and a local parity measurement we show how entanglement can be detected between two harmonic oscillators. The scheme generalizes to measure both linear and nonlinear functionals of an arbitrary oscillator state. This leads to many applications including purity tests, eigenvalue estimation, entropy, and distance measures-all without the need for nonlinear interactions or complete state reconstruction. Remarkably, experimental realization of the proposed scheme is already within the reach of current technology with linear optics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an experimental analysis of quadrature entanglement produced from a pair of amplitude squeezed beams. The correlation matrix of the state is characterized within a set of reasonable assumptions, and the strength of the entanglement is gauged using measures of the degree of inseparability and the degree of Einstein-Podolsky-Rosen (EPR) paradox. We introduce controlled decoherence in the form of optical loss to the entangled state, and demonstrate qualitative differences in the response of the degrees of inseparability and EPR paradox to this loss. The entanglement is represented on a photon number diagram that provides an intuitive and physically relevant description of the state. We calculate efficacy contours for several quantum information protocols on this diagram, and use them to predict the effectiveness of our entanglement in those protocols.