51 resultados para Dynamic Load Model

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical model that describes the operation of a sequential leach bed process for anaerobic digestion of organic fraction of municipal solid waste (MSW) is developed and validated. This model assumes that ultimate mineralisation of the organic component of the waste occurs in three steps, namely solubilisation of particulate matter, fermentation to volatile organic acids (modelled as acetic acid) along with liberation of carbon dioxide and hydrogen, and methanogenesis from acetate and hydrogen. The model incorporates the ionic equilibrium equations arising due to dissolution of carbon dioxide, generation of alkalinity from breakdown of solids and dissociation of acetic acid. Rather than a charge balance, a mass balance on the hydronium and hydroxide ions is used to calculate pH. The flow of liquid through the bed is modelled as occurring through two zones-a permeable zone with high flushing rates and the other more stagnant. Some of the kinetic parameters for the biological processes were obtained from batch MSW digestion experiments. The parameters for flow model were obtained from residence time distribution studies conducted using tritium as a tracer. The model was validated using data from leach bed digestion experiments in which a leachate volume equal to 10% of the fresh waste bed volume was sequenced. The model was then tested, without altering any kinetic or flow parameters, by varying volume of leachate that is sequenced between the beds. Simulations for sequencing/recirculating 5 and 30% of the bed volume are presented and compared with experimental results. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the event statistics obtained from two differing simplified models for earthquake faults. The first model is a reproduction of the Block-Slider model of Carlson et al. (1991), a model often employed in seismicity studies. The second model is an elastodynamic fault model based upon the Lattice Solid Model (LSM) of Mora and Place (1994). We performed simulations in which the fault length was varied in each model and generated synthetic catalogs of event sizes and times. From these catalogs, we constructed interval event size distributions and inter-event time distributions. The larger, localised events in the Block-Slider model displayed the same scaling behaviour as events in the LSM however the distribution of inter-event times was markedly different. The analysis of both event size and inter-event time statistics is an effective method for comparative studies of differing simplified models for earthquake faults.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This theoretical note describes an expansion of the behavioral prediction equation, in line with the greater complexity encountered in models of structured learning theory (R. B. Cattell, 1996a). This presents learning theory with a vector substitute for the simpler scalar quantities by which traditional Pavlovian-Skinnerian models have hitherto been represented. Structured learning can be demonstrated by vector changes across a range of intrapersonal psychological variables (ability, personality, motivation, and state constructs). Its use with motivational dynamic trait measures (R. B. Cattell, 1985) should reveal new theoretical possibilities for scientifically monitoring change processes (dynamic calculus model; R. B. Cattell, 1996b), such as encountered within psycho therapeutic settings (R. B. Cattell, 1987). The enhanced behavioral prediction equation suggests that static conceptualizations of personality structure such as the Big Five model are less than optimal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Improvements in seasonal climate forecasts have potential economic implications for international agriculture. A stochastic, dynamic simulation model of the international wheat economy is developed to estimate the potential effects of seasonal climate forecasts for various countries' wheat production, exports and world trade. Previous studies have generally ignored the stochastic and dynamic aspects of the effects associated with the use of climate forecasts. This study shows the importance of these aspects. In particular with free trade, the use of seasonal forecasts results in increased producer surplus across all exporting countries. In fact, producers appear to capture a large share of the economic surplus created by using the forecasts. Further, the stochastic dimensions suggest that while the expected long-run benefits of seasonal forecasts are positive, considerable year-to-year variation in the distribution of benefits between producers and consumers should be expected. The possibility exists for an economic measure to increase or decrease over a 20-year horizon, depending on the particular sequence of years.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we propose a range of dynamic data envelopment analysis (DEA) models which allow information on costs of adjustment to be incorporated into the DEA framework. We first specify a basic dynamic DEA model predicated on a number or simplifying assumptions. We then outline a number of extensions to this model to accommodate asymmetric adjustment costs, non-static output quantities, non-static input prices, and non-static costs of adjustment, technological change, quasi-fixed inputs and investment budget constraints. The new dynamic DEA models provide valuable extra information relative to the standard static DEA models-they identify an optimal path of adjustment for the input quantities, and provide a measure of the potential cost savings that result from recognising the costs of adjusting input quantities towards the optimal point. The new models are illustrated using data relating to a chain of 35 retail department stores in Chile. The empirical results illustrate the wealth of information that can be derived from these models, and clearly show that static models overstate potential cost savings when adjustment costs are non-zero.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives: In this paper, we present a unified electrodynamic heart model that permits simulations of the body surface potentials generated by the heart in motion. The inclusion of motion in the heart model significantly improves the accuracy of the simulated body surface potentials and therefore also the 12-lead ECG. Methods: The key step is to construct an electromechanical heart model. The cardiac excitation propagation is simulated by an electrical heart model, and the resulting cardiac active forces are used to calculate the ventricular wall motion based on a mechanical model. The source-field point relative position changes during heart systole and diastole. These can be obtained, and then used to calculate body surface ECG based on the electrical heart-torso model. Results: An electromechanical biventricular heart model is constructed and a standard 12-lead ECG is simulated. Compared with a simulated ECG based on the static electrical heart model, the simulated ECG based on the dynamic heart model is more accordant with a clinically recorded ECG, especially for the ST segment and T wave of a V1-V6 lead ECG. For slight-degree myocardial ischemia ECG simulation, the ST segment and T wave changes can be observed from the simulated ECG based on a dynamic heart model, while the ST segment and T wave of simulated ECG based on a static heart model is almost unchanged when compared with a normal ECG. Conclusions: This study confirms the importance of the mechanical factor in the ECG simulation. The dynamic heart model could provide more accurate ECG simulation, especially for myocardial ischemia or infarction simulation, since the main ECG changes occur at the ST segment and T wave, which correspond with cardiac systole and diastole phases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using peanuts as an example, a generic methodology is presented to forward-estimate regional crop production and associated climatic risks based on phases of the Southern Oscillation Index (SOI). Yield fluctuations caused by a highly variable rainfall environment are of concern to peanut processing and marketing bodies. The industry could profitably use forecasts of likely production to adjust their operations strategically. Significant, physically based lag-relationships exist between an index of ocean/atmosphere El Nino/Southern Oscillation phenomenon and future rainfall in Australia and elsewhere. Combining knowledge of SOI phases in November and December with output from a dynamic simulation model allows the derivation of yield probability distributions based on historic rainfall data. This information is available shortly after planting a crop and at least 3-5 months prior to harvest. The study shows that in years when the November-December SOI phase is positive there is an 80% chance of exceeding average district yields. Conversely, in years when the November-December SOI phase is either negative or rapidly falling there is only a 5% chance of exceeding average district yields, but a 95% chance of below average yields. This information allows the industry to adjust strategically for the expected volume of production. The study shows that simulation models can enhance SOI signals contained in rainfall distributions by discriminating between useful and damaging rainfall events. The methodology can be applied to other industries and regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Large-eddy simulation is used to predict heat transfer in the separated and reattached flow regions downstream of a backward-facing step. Simulations were carried out at a Reynolds number of 28 000 (based on the step height and the upstream centreline velocity) with a channel expansion ratio of 1.25. The Prandtl number was 0.71. Two subgrid-scale models were tested, namely the dynamic eddy-viscosity, eddy-diffusivity model and the dynamic mixed model. Both models showed good overall agreement with available experimental data. The simulations indicated that the peak in heat-transfer coefficient occurs slightly upstream of the mean reattachment location, in agreement with experimental data. The results of these simulations have been analysed to discover the mechanisms that cause this phenomenon. The peak in heat-transfer coefficient shows a direct correlation with the peak in wall shear-stress fluctuations. It is conjectured that the peak in these fluctuations is caused by an impingement mechanism, in which large eddies, originating in the shear layer, impact the wall just upstream of the mean reattachment location. These eddies cause a 'downwash', which increases the local heat-transfer coefficient by bringing cold fluid from above the shear layer towards the wall.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. A model of the population dynamics of Banksia ornata was developed, using stochastic dynamic programming (a state-dependent decision-making tool), to determine optimal fire management strategies that incorporate trade-offs between biodiversity conservation and fuel reduction. 2. The modelled population of B. ornata was described by its age and density, and was exposed to the risk of unplanned fires and stochastic variation in germination success. 3. For a given population in each year, three management strategies were considered: (i) lighting a prescribed fire; (ii) controlling the incidence of unplanned fire; (iii) doing nothing. 4. The optimal management strategy depended on the state of the B. ornata population, with the time since the last fire (age of the population) being the most important variable. Lighting a prescribed fire at an age of less than 30 years was only optimal when the density of seedlings after a fire was low (< 100 plants ha(-1)) or when there were benefits of maintaining a low fuel load by using more frequent fire. 5. Because the cost of management was assumed to be negligible (relative to the value of the persistence of the population), the do-nothing option was never the optimal strategy, although lighting prescribed fires had only marginal benefits when the mean interval between unplanned fires was less than 20-30 years.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An important consideration in the development of mathematical models for dynamic simulation, is the identification of the appropriate mathematical structure. By building models with an efficient structure which is devoid of redundancy, it is possible to create simple, accurate and functional models. This leads not only to efficient simulation, but to a deeper understanding of the important dynamic relationships within the process. In this paper, a method is proposed for systematic model development for startup and shutdown simulation which is based on the identification of the essential process structure. The key tool in this analysis is the method of nonlinear perturbations for structural identification and model reduction. Starting from a detailed mathematical process description both singular and regular structural perturbations are detected. These techniques are then used to give insight into the system structure and where appropriate to eliminate superfluous model equations or reduce them to other forms. This process retains the ability to interpret the reduced order model in terms of the physico-chemical phenomena. Using this model reduction technique it is possible to attribute observable dynamics to particular unit operations within the process. This relationship then highlights the unit operations which must be accurately modelled in order to develop a robust plant model. The technique generates detailed insight into the dynamic structure of the models providing a basis for system re-design and dynamic analysis. The technique is illustrated on the modelling for an evaporator startup. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this second paper, the three structural measures which have been developed are used in the modelling of a three stage centrifugal synthesis gas compressor. The goal of this case study is to determine the essential mathematical structure which must be incorporated into the compressor model to accurately model the shutdown of this system. A simple, accurate and functional model of the system is created via three structural measures. It was found that the model can be correctly reduced into its basic modes and that the order of the differential system can be reduced from 51(st) to 20(th). Of the 31 differential equational 21 reduce to algebraic relations, 8 become constants and 2 can be deleted thereby increasing the algebraic set from 70 to 91 equations. An interpretation is also obtained as to which physical phenomena are dominating the dynamics of the compressor add whether the compressor will enter surge during the shutdown. Comparisons of the reduced model performance against the full model are given, showing the accuracy and applicability of the approach. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A dynamic modelling methodology, which combines on-line variable estimation and parameter identification with physical laws to form an adaptive model for rotary sugar drying processes, is developed in this paper. In contrast to the conventional rate-based models using empirical transfer coefficients, the heat and mass transfer rates are estimated by using on-line measurements in the new model. Furthermore, a set of improved sectional solid transport equations with localized parameters is developed in this work to reidentified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.place the global correlation for the computation of solid retention time. Since a number of key model variables and parameters are identified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposed a novel model for short term load forecast in the competitive electricity market. The prior electricity demand data are treated as time series. The forecast model is based on wavelet multi-resolution decomposition by autocorrelation shell representation and neural networks (multilayer perceptrons, or MLPs) modeling of wavelet coefficients. To minimize the influence of noisy low level coefficients, we applied the practical Bayesian method Automatic Relevance Determination (ARD) model to choose the size of MLPs, which are then trained to provide forecasts. The individual wavelet domain forecasts are recombined to form the accurate overall forecast. The proposed method is tested using Queensland electricity demand data from the Australian National Electricity Market. (C) 2001 Elsevier Science B.V. All rights reserved.