117 resultados para Difference Equations with Maxima

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study difference equations which arise as discrete approximations to two-point boundary value problems for systems of second-order ordinary differential equations. We formulate conditions which guarantee a priori bounds on first differences of solutions to the discretized problem. We establish existence results for solutions to the discretized boundary value problems subject to nonlinear boundary conditions. We apply our results to show that solutions to the discrete problem converge to solutions of the continuous problem in an aggregate sense. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the continuous problem y"=f(x,y,y'), xc[0,1], 0=G((y(0),y(1)),(y'(0), y'(1))), and its discrete approximation (y(k+1)-2y(k)+y(k-1))/h(2) =f(t(k), y(k), v(k)), k = 1,..., n-1, 0 = G((y(0), y(n)), (v(1), v(n))), where f and G = (g(0), g(1)) are continuous and fully nonlinear, h = 1/n, v(k) = (y(k) - y(k-1))/h, for k =1,..., n, and t(k) = kh, for k = 0,...,n. We assume there exist strict lower and strict upper solutions and impose additional conditions on f and G which are known to yield a priori bounds on, and to guarantee the existence of solutions of the continuous problem. We show that the discrete approximation also has solutions which approximate solutions of the continuous problem and converge to the solution of the continuous problem when it is unique, as the grid size goes to 0. Homotopy methods can be used to compute the solution of the discrete approximation. Our results were motivated by those of Gaines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Difference equations which discretely approximate boundary value problems for second-order ordinary differential equations are analysed. It is well known that the existence of solutions to the continuous problem does not necessarily imply existence of solutions to the discrete problem and, even if solutions to the discrete problem are guaranteed, they may be unrelated and inapplicable to the continuous problem. Analogues to theorems for the continuous problem regarding a priori bounds and existence of solutions are formulated for the discrete problem. Solutions to the discrete problem are shown to converge to solutions of the continuous problem in an aggregate sense. An example which arises in the study of the finite deflections of an elastic string under a transverse load is investigated. The earlier results are applied to show the existence of a solution; the sufficient estimates on the step size are presented. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We establish maximum principles for second order difference equations and apply them to obtain uniqueness for solutions of some boundary value problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The q-deformed supersymmetric t-J model on a semi-infinite lattice is diagonalized by using the level-one vertex operators of the quantum affine superalgebra U-q[sl(2\1)]. We. give the bosonization of the boundary states. We give an integral expression for the correlation functions of the boundary model, and derive the difference equations which they satisfy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Izergin-Korepin model on a semi-infinite lattice is diagonalized by using the level-one vertex operators of the twisted quantum affine algebra U-q[((2))(2)]. We give the bosonization of the vacuum state with zero particle content. Excitation states are given by the action of the vertex operators on the vacuum state. We derive the boundary S-matrix. We give an integral expression of the correlation functions of the boundary model, and derive the difference equations which they satisfy. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We establish existence results for solutions to three-point boundary value problems for nonlinear, second-order, ordinary differential equations with nonlinear boundary conditions. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Equilibrium Flux Method [1] is a kinetic theory based finite volume method for calculating the flow of a compressible ideal gas. It is shown here that, in effect, the method solves the Euler equations with added pseudo-dissipative terms and that it is a natural upwinding scheme. The method can be easily modified so that the flow of a chemically reacting gas mixture can be calculated. Results from the method for a one-dimensional non-equilibrium reacting flow are shown to agree well with a conventional continuum solution. Results are also presented for the calculation of a plane two-dimensional flow, at hypersonic speed, of a dissociating gas around a blunt-nosed body.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technique to simulate the grand canonical ensembles of interacting Bose gases is presented. Results are generated for many temperatures by averaging over energy-weighted stochastic paths, each corresponding to a solution of coupled Gross-Pitaevskii equations with phase noise. The stochastic gauge method used relies on an off-diagonal coherent-state expansion, thus taking into account all quantum correlations. As an example, the second-order spatial correlation function and momentum distribution for an interacting 1D Bose gas are calculated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries, in particular, from explosions. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel for its simplicity and sufficiency for practical engineering design problems. The code uses a finite-volume formulation of the unsteady Euler equations with a second order explicit Runge-Kutta Godonov (MUSCL) scheme. Gradients are calculated using a least-squares method with a minmod limiter. Flux solvers used are AUSM, AUSMDV and EFM. No fluid-structure coupling or chemical reactions are allowed, but gas models can be perfect gas and JWL or JWLB for the explosive products. This report also describes the code’s ‘octree’ mesh adaptive capability and point-inclusion query procedures for the VCE geometry engine. Finally, some space will also be devoted to describing code parallelization using the shared-memory OpenMP paradigm. The user manual to the code is to be found in the companion report 2007/13.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the author's joint paper [HJS] with Jest and Struwe, we discuss asymtotic limits of a self-dual Ginzburg-Landau functional involving a section of a line bundle over a closed Riemann surface and a connection on this bundle. In this paper, the author generalizes the above results [HJS] to the case of bounded domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamic response of dry masonry columns can be approximated with finite-difference equations. Continuum models follow by replacing the difference quotients of the discrete model by corresponding differential expressions. The mathematically simplest of these models is a one-dimensional Cosserat theory. Within the presented homogenization context, the Cosserat theory is obtained by making ad hoc assumptions regarding the relative importance of certain terms in the differential expansions. The quality of approximation of the various theories is tested by comparison of the dispersion relations for bending waves with the dispersion relation of the discrete theory. All theories coincide with differences of less than 1% for wave-length-block-height (L/h) ratios bigger than 2 pi. The theory based on systematic differential approximation remains accurate up to L/h = 3 and then diverges rapidly. The Cosserat model becomes increasingly inaccurate for L/h < 2 pi. However, in contrast to the systematic approximation, the wave speed remains finite. In conclusion, considering its relative simplicity, the Cosserat model appears to be the natural starting point for the development of continuum models for blocky structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We establish existence of solutions for a finite difference approximation to y = f(x, y, y ') on [0, 1], subject to nonlinear two-point Sturm-Liouville boundary conditions of the form g(i)(y(i),y ' (i)) = 0, i = 0, 1, assuming S satisfies one-sided growth bounds with respect to y '. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamic modelling methodology, which combines on-line variable estimation and parameter identification with physical laws to form an adaptive model for rotary sugar drying processes, is developed in this paper. In contrast to the conventional rate-based models using empirical transfer coefficients, the heat and mass transfer rates are estimated by using on-line measurements in the new model. Furthermore, a set of improved sectional solid transport equations with localized parameters is developed in this work to reidentified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.place the global correlation for the computation of solid retention time. Since a number of key model variables and parameters are identified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some efficient solution techniques for solving models of noncatalytic gas-solid and fluid-solid reactions are presented. These models include those with non-constant diffusivities for which the formulation reduces to that of a convection-diffusion problem. A singular perturbation problem results for such models in the presence of a large Thiele modulus, for which the classical numerical methods can present difficulties. For the convection-diffusion like case, the time-dependent partial differential equations are transformed by a semi-discrete Petrov-Galerkin finite element method into a system of ordinary differential equations of the initial-value type that can be readily solved. In the presence of a constant diffusivity, in slab geometry the convection-like terms are absent, and the combination of a fitted mesh finite difference method with a predictor-corrector method is used to solve the problem. Both the methods are found to converge, and general reaction rate forms can be treated. These methods are simple and highly efficient for arbitrary particle geometry and parameters, including a large Thiele modulus. (C) 2001 Elsevier Science Ltd. All rights reserved.