29 resultados para Diferenciação neuronal
em University of Queensland eSpace - Australia
Resumo:
The homeostasis of glutamate is critical to normal brain function; deficiencies in the regulation of extracellular glutamate are thought to be a major determinant of damage in hypoxic brains. Extracellular levels of glutamate are regulated mainly by plasmalemmal glutamate transporters. We have evaluated the distribution of the glutamate transporter GLAST and two splice variants of GLT-1 in the hypoxic neonatal pig brain using this as model of neonatal humans. In response to severe hypoxic insults, we observe a rapid loss of two glial glutamate transporters from specific brain regions, such as the CA1 region of the hippocampus, but not the dentate gyrus. The spatial distribution of loss accords with patterns of damage in these brains. Conversely, we demonstrate that hypoxia evokes the expression of a splice variant of GLT-1 in neurons. We suggest that this expression may be induced in response to elevated extracellular glutamate around these neurons, and that this splice variant may represent a useful marker for direct quantification of the extent of likely neuronal damage in hypoxic brains. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Cone snails have evolved a vast array of peptide toxins for prey capture and defence. These peptides are directed against a wide variety of pharmacological targets, making them an invaluable source of ligands for studying the properties of these targets in normal and diseased states. A number of these peptides have shown efficacy in vivo, including inhibitors of calcium channels, the norepinephrine transporter, nicotinic acetylcholine receptors, NMDA receptors and neurotensin receptors, with several having undergone pre-clinical or clinical development for the treatment of pain.
Resumo:
alpha-Conotoxins, from cone snails, and alpha-neurotoxins, from snakes, are competitive inhibitors of nicotinic acetylcholine receptors (nAChRs) that have overlapping binding sites in the ACh binding pocket. These disulphide-rich peptides are used extensively as tools to localize and pharmacologically characterize specific nAChRs subtypes. Recently, a homology model based on the high-resolution structure of an ACh binding protein (AChBP) allowed the three-fingered alpha-neurotoxins to be docked onto the alpha7 nAChR. To investigate if alpha-conotoxins interact with the nAChR in a similar manner, we built homology models of human alpha7 and alpha3beta2 nAChRs, and performed docking simulations of alpha-conotoxins ImI, PnIB, PnIA and MII using the program GOLD. Docking revealed that alpha-conotoxins have a different mode of interaction compared with alpha-neurotoxins, with surprisingly few nAChR residues in common between their overlapping binding sites. These docking experiments show that Imi and PnIB bind to the ACh binding pocket via a small cavity located above the beta9/beta10 hairpin of the (+)alpha7 nAChR subunit. Interestingly, PnIB, PnIA and MII were found to bind in a similar location on alpha7 or alpha3beta2 receptors mostly through hydrophobic interactions, while ImI bound further from the ACh binding pocket, mostly through electrostatic interactions. These findings, which distinguish alpha-conotoxin and alpha-neurotoxin binding modes, have implications for the rational design of selective nAChR antagonists. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Nedd4 and Nedd4-2 are ubiquitin-protein ligases known to regulate a number of membrane proteins including receptors and ion transporters. Regulation of the epithelial Na+ channel by Nedd4 and Nedd4-2 is mediated via interactions between the PY motifs of the epithelial sodium channel subunits and the Nedd4/Nedd4-2 WW domains. This example serves as a model for the regulation of other PY motif-containing ion channels by Nedd4 and Nedd4-2. We found that the carboxyl termini of the six voltage-gated Na+ (Na-v) channels contain typical PY motifs (PPXY), and a further Na-v contains a PY motif variant (LPXY). Not only did we demonstrate by Far-Western analysis that Nedd4 and Nedd4-2 interact with the PY motif-containing Na-v channels, but we also showed that these channels have conserved WW domain binding specificity. We further showed that the carboxyl termini fusion proteins of one central nervous system and one peripheral nervous system-derived Na+ channel (Na(v)1.2 and Na(v)1.7, respectively) are readily ubiquitinated by Nedd4-2. In Xenopus oocytes, Nedd4-2 strongly inhibited the activities of all three Na(v)s (Na(v)1.2, Na(v)1.7, and Na(v)1.8) tested. Interestingly, Nedd4 suppressed the activity of Na(v)1.2 and Na(v)1.7 but was a poor inhibitor of Na(v)1.8. Our results provide evidence that Nedd4 and Nedd4-2 are likely to be key regulators of specific neuronal Na-v channels in vivo.
Resumo:
The expression and function of nicotinic ACh receptors (nAChRs) in rat coronary microvascular endothelial cells (CMECs) were examined using RT-PCR and whole cell patch-clamp recording methods. RT-PCR revealed expression of mRNA encoding for the subunits alpha(2), alpha(3), alpha(4), alpha(5), alpha(7), beta(2), and beta(4) but not beta(3). Focal application of ACh evoked an inward current in isolated CMECs voltage clamped at negative membrane potentials. The current-voltage relationship of the ACh-induced current exhibited marked inward rectification and a reversal potential (E-rev) close to 0 mV. The cholinergic agonists nicotine, epibatidine, and cytisine activated membrane currents similar to those evoked by ACh. The nicotine-induced current was abolished by the neuronal nAChR antagonist mecamylamine. The direction and magnitude of the shift in E-rev of nicotine-induced current as a function of extracellular Na+ concentration indicate that the nAChR channel is cation selective and follows that predicted by the Goldman-Hodgkin-Katz equation assuming K+/Na+ permeability ratio of 1.11. In fura-2-loaded CMECs, application of ACh, but not of nicotine, elicited a transient increase in intracellular free Ca2+ concentration. Taken together, these results demonstrate that neuronal nAChR activation by cholinergic agonists evokes an inward current in CMECs carried primarily by Na+, which may contribute to the plasma nicotine-induced changes in microvascular permeability and reactivity induced by elevations in plasma nicotine.
Resumo:
The basis for the neuroprotectant effect of D-mannitol in reducing the sensory neurological disturbances seen in ciguatera poisoning, is unclear. Pacific ciguatoxin-1 (P-CTX-1), at a concentration 10 nM, caused a statistically significant swelling of rat sensory dorsal root ganglia (DRG) neurons that was reversed by hyperosmolar 50 MM D-mannitol. However, using electron paramagnetic resonance (EPR) spectroscopy, it was found that P-CTX-1 failed to generate hydroxyl free radicals at concentrations of toxin that caused profound effects on neuronal excitability. Whole-cell patch-clamp recordings from DRG neurons revealed that both hyper- and iso-osmolar 50 MM D-mannitol prevented the membrane depolarisation and repetitive firing of action potentials induced by P-CTX-1. In addition, both hyper- and iso-osmolar 50 MM D-mannitol prevented the hyperpolarising shift in steady-state inactivation and the rise in leakage current through tetrodotoxin (TTX)-sensitive Na-v channels, as well as the increased rate of recovery from inactivation of TTX-resistant Nav channels induced by P-CTX-1. D-Mannitol also reduced, but did not prevent, the inhibition of peak TTX-sensitive and TTX-resistant I-Na amplitude by P-CTX-1. Additional experiments using hyper- and isoosmolar D-sorbitol, hyperosmolar sucrose and the free radical scavenging agents Trolox (R) and L-ascorbic acid showed that these agents, unlike D-mannitol, failed to prevent the effects of P-CTX-1 on spike electrogenesis and Na-v channel gating. These selective actions of D-mannitol indicate that it does not act purely as an osmotic agent to reduce swelling of nerves, but involves a more complex action dependent on the Nav channel subtype, possibly to alter or reduce toxin association. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The action of alcohol on neuronal pathways has been an issue of increasing research focus, with numerous findings contradicting the previously accepted idea that its effect is nonspecific. The human NP22 (hNP22) gene was revealed by its elevated expression in the frontal cortex of the human alcoholic. The sequences of hNP22 and the rat orthologue rNP22 contain a number of domains consistent with those of cytoskeletal-interacting proteins. Localization of rNP22 is restricted to the cytoplasm and processes of neurons and it colocalizes with elements of the microfilament and microtubule matrices including filamentous actin (F-actin), alpha-tubulin, tau, and microtubule-associated protein 2 (MAP2). Withdrawal of Wistar rats after alcohol dependence induced by alcohol vapor produced elevated levels of rNP22 mRNA and protein in the cortex, CA2, and dentate gyrus regions of the hippocampus. In contrast, there was decreased rNP22 expression in the striatum after chronic ethanol exposure. Chronic ethanol exposure did not markedly alter rNP22 colocalization with F-actin, alpha-tubulin, or MAP2, although colocalization at the periphery of the neuronal soma with F-actin was observed only after chronic ethanol exposure and withdrawal. Rat NP22 colocalization with MAP2 was reduced during withdrawal, whereas association with alpha-tubulin and actin was maintained. These findings suggest that the effect of chronic ethanol exposure and withdrawal on rNP22 expression is region selective. Rat NP22 may affect microtubule or microfilament function, thereby regulating the neuroplastic changes associated with the development of alcohol dependence and physical withdrawal.
Resumo:
Conditional knockout of the KAP3 subunit from the kinesin motor KIF3 alters tissue patterning and causes abnormal proliferation of neural progenitor cells in the mouse brain. Impaired transport of N-cadherin to the surface of these cells may be one explanation for how such defects arise.
Resumo:
The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na-v,.) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na-v channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons, P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na-v currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that Occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP. and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na-v. channel gating, observed clinically in response to ciguatera poisoning. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
Human neuronal protein 22 (hNP22) is a novel neuron-specific protein featuring numerous motifs previously described in cytoskeleton-associating and signaling proteins. Because previous studies have supported abnormalities in neuronal cytoarchitecture and/or development in the schizophrenia brain, we examined the expression of hNP22 in the anterior cingulate cortex, the hippocampus and the prefrontal cortex of schizophrenic and normal control postmortem brains using high-sensitive immunohistochemistry. Seven schizophrenic and seven age- and sex-matched control brains were examined. The ratio of hNP22-immunopositive cells/total cells was significantly reduced in layer V (p = .020) and layer VI (p = .022) of the anterior cingulate cortex of schizophrenic brain compared with controls. In contrast, there were no significant changes observed in the hippocampus and the prefrontal cortex. These results suggest that altered expression of hNP22 may be associated with modifications in neuronal cytoarchitecture leading to dysregulation of neural signal transduction in the anterior cingulate cortex of the schizophrenia brain.
Resumo:
protein modulation of neuronal nicotinic acetylcholine receptor ( nAChR) channels in rat intrinsic cardiac ganglia was examined using dialyzed whole-cell and excised membrane patch-recording configurations. Cell dialysis with GTP gamma S increased the agonist affinity of nAChRs, resulting in a potentiation of nicotine-evoked whole-cell currents at low concentrations. ACh- and nicotine-evoked current amplitudes were increased approximately twofold in the presence of GTP gamma S. In inside-out membrane patches, the open probability (NPo) of nAChR-mediated unitary currents was reversibly increased fourfold after bath application of 0.2mM GTP gamma S relative to control but was unchanged in the presence of GDP gamma S. The modulation of nAChR-mediated whole- cell currents was agonist specific; currents evoked by the cholinergic agonists ACh, nicotine, and 1,1-dimethyl-4-phenylpiperazinium iodide, but not cytisine or choline, were potentiated in the presence of GTP gamma S. The direct interaction between G-protein subunits and nAChRs was examined by bath application of either G(o)alpha or G beta gamma subunits to inside-out membrane patches and in glutathione S-transferase pull-down and coimmunoprecipitation experiments. Bath application of 50 nM G beta gamma increased the open probability of ACh- activated single-channel currents fivefold, whereas G(o)alpha( 50 nM) produced no significant increase in NPo. Neuronal nAChR subunits alpha 3-alpha 5 and alpha 2 exhibited a positive interaction with G(o)alpha and G beta gamma, whereas beta 4 and alpha 7 failed to interact with either of the G-protein subunits. These results provide evidence for a direct interaction between nAChR and G-protein subunits, underlying the increased open probability of ACh-activated single-channel currents and potentiation of nAChR-mediated whole-cell currents in parasympathetic neurons of rat intrinsic cardiac ganglia.
Resumo:
Neurodegenerative diseases such as Huntington's disease, ischemia, and Alzheimer's disease (AD) are major causes of death. Recently, metabotropic glutamate receptors (mGluRs), a group of seven-transmembrane-domain proteins that couple to G-proteins, have become of interest for studies of pathogenesis. Group I mGluRs control the levels of second messengers such as inositol 1,4,5-triphosphate (IP3) Cal(2+) ions and cAMP. They elicit the release of arachidonic acid via intracellular Ca2+ mobilization from intracellular stores such as mitochondria and endoplasmic reticulum. This facilitates the release of glutamate and could trigger the formation of neurofibrillary tangles, a pathological hallmark of AD. mGluRs regulate neuronal injury and survival, possibly through a series of downstream protein kinase and cysteine protease signaling pathways that affect mitochondrially mediated programmed cell death. They may also play a role in glutamate-induced neuronal death by facilitating Cal(2+) mobilization. Hence, mGluRs have become a target for neuroprotective drug development. They represent a pharmacological path to a relatively subtle amelioration of neurotoxicity because they serve a modulatory rather than a direct role in excitatory glutamatergic transmission.
Resumo:
We review recent findings that, using fractal analysis, have demonstrated systematic regional and species differences in the branching complexity of neocortical pyramidal neurons. In particular, attention is focused on how fractal analysis is being applied to the study of specialization in pyramidal cell structure during the evolution of the primate cerebral cortex. These studies reveal variation in pyramidal cell phenotype that cannot be attributed solely to increasing brain volume. Moreover, the results of these studies suggest that the primate cerebral cortex is composed of neurons of different structural complexity. There is growing evidence to suggest that regional and species differences in neuronal structure influence function at both the cellular and circuit levels. These data challenge the prevailing dogma for cortical uniformity.