128 resultados para DNA vector
em University of Queensland eSpace - Australia
Resumo:
A plasmid DNA directing transcription of the infectious full-length RNA genome of Kunjin (KUN) virus in vivo from a mammalian expression promoter was used to vaccinate mice intramuscularly. The KUN viral cDNA encoded in the plasmid contained the mutation in the NS1 protein (Pro-250 to Leu) previously shown to attenuate KUN virus in weanling mice. KUN virus was isolated from the blood of immunized mice 3-4 days after DNA inoculation, demonstrating that infectious RNA was being transcribed in vivo; however, no symptoms of virus-induced disease were observed. By 19 days postimmunization, neutralizing antibody was detected in the serum of immunized animals. On challenge with lethal doses of the virulent New York strain of West Nile (WN) or wild-type KUN virus intracerebrally or intraperitoneally, mice immunized with as little as 0.1-1 mug of KUN plasmid DNA were solidly protected against disease. This finding correlated with neutralization data in vitro showing that serum from KUN DNA-immunized mice neutralized KUN and WN,viruses with similar efficiencies. The results demonstrate that delivery of an attenuated but replicating KUN virus via a plasmid DNA vector may provide an effective vaccination strategy against virulent strains of WN virus.
Resumo:
CD4-selective targeting of an antibody-polycation-DNA complex was investigated The complex was synthesized with the anti-CD4 monoclonal antibody B-F5, polylysine(268) (pLL) and either the pGL3 control vector containing the luciferase reporter gene or the pGeneGrip vector containing the green fluorescent protein (GFP) gene. B-F5-pLL-DNA complexes inhibited the binding of I-125-B-F5 to CD4(+) Jurkat cells, while complexes synthesised either without B-F5 or using a non-specific mouse IgG1 antibody had little or no effect Expression of the luciferase reporter gene was achieved in Jurkat cells using the B-F5-pLL-pGL3 complex and was enhanced in the presence of PMA. Negligible luciferase activity was defected with the non-specific antibody complex in Jurkat cells or with the B-F5-pLL-pGL3 complex in the CD4(-) K-562 cells. Using complexes synthesised with the pGeneGrip vector, the transfection efficiency in Jurkat and K-562 cells was examined using confocal microscopy. More than 95% of Jurkat cells expressed GFP and the level of this expression was markedly enhanced by PMA. Negligible GFP expression was seen in K-562 cells or when B-F5 was replaced by a nonspecific antibody. Using flow cytometry, fluorescein-labelled complex showed specific targeting to CD4(+) cells in a mixed cell population from human peripheral blood. These studies demonstrate the selective transfection of CD4(+) T-lymphoid cells using a polycation-based gene delivery system. The complex may provide a means of delivering anti-HIV gene therapies to CD4(+) cells in vivo.
Resumo:
Previous research has indicated that biotypes A and B of Colletotrichum gloeosporioides that infect Stylosanthes spp. in Australia are asexual and vegetatively incompatible. Selectable marker genes conferring resistance either to hygromycin or phleomycin were introduced into isolates of these biotypes. Vectors conferring resistance to hygromycin and carrying telomeric sequences from Fusarium oxysporum replicated autonomously in C. gloeosporioides and gave frequencies of transformation 100-times higher than vectors that integrated into the genome. Monoconidial colonies resistant to both antibiotics were recovered when hygromycin-resistant biotype-A transformants carrying an autonomously replicating vector were paired in culture with a phleomycin-resistant biotype-B transformant carrying integrative vector sequences. Molecular analysis of double antibiotic-resistant progeny indicated that they contained the autonomous vector in a biotype-B genetic background, Results indicate that transfer of the autonomous vector had occurred from biotype A to biotype B, demonstrating the potential for transfer of genetic information between these biotypes.
Resumo:
Current methods to detect transduction efficiency during the routine use of integrating retroviral vectors in gene therapy applications may require the use of radioactivity and usually rely upon subjective determination of the results. We have developed two competitive quantitative assays that use an enzyme-linked, amplicon hybridization assay (ELAHA) to detect the products of PCR-amplified regions of transgene from cells transduced with Moloney murine leukemia virus vectors. The quantitative assays (PCR-ELAHA) proved to be simple, rapid, and sensitive, avoiding the need for Southern hybridization, complex histochemical stains, or often subjective and time-consuming tissue culture and immunofluorescence assays. The PCR-ELAHA systems can rapidly detect proviral DNA from any retroviral vector carrying the common selective and marker genes neomycin phosphotransferase and green fluorescent protein, and the methods described are equally applicable to other sequences of interest, providing a cheaper alternative to the evolving real-time PCR methods. The results revealed the number of copies of retrovector provirus present per stably transduced cell using vectors containing either one or both qPCR targets.
Resumo:
We constructed a BAC library of the model legume Lotus japonicus with a 6-to 7-fold genome coverage. We used vector PCLD04541, which allows direct plant transformation by BACs. The average insert size is 94 kb. Clones were stable in Escherichia coli and Agrobacterium tumefaciens.
Resumo:
The use of electrotransfer for DNA delivery to prokaryotic cells, and eukaryotic cells in vitro, has been well known and widely used for many years. However, it is only recently that electric fields have been used to enhance DNA transfer to animal cells in vivo, and this is known as DNA electrotransfer or in vivo DNA electroporation. Some of the advantages of this method of somatic cell gene transfer are that it is a simple method that can be used to transfer almost any DNA construct to animal cells and tissues in vivo; multiple constructs can be co-transfected; it is equally applicable to dividing and nondividing cells; the DNA of interest does not need to be subeloned into a specific viral transfer vector and there is no need for the production of high titre viral stocks; and, as no viral genes are expressed there is less chance of an adverse immunologic reaction to vector sequences. The ease with which efficient in vivo gene transfer can be achieved with in vivo DNA electrotransfer is now allowing genetic analysis to be applied to a number of classic animal model systems where transgenic and embryonic stem cell techniques are not well developed, but for which a wealth of detailed descriptive embryological information is available, or surgical manipulation is much more feasible. As well as exciting applications in developmental biology, in vivo DNA electrotransfer is also being used to transfer genes to skeletal muscle and drive expression of therapeutically active proteins, and to examine exogenous gene and protein function in normal adult cells situated within the complex environment of a tissue and organ system in vivo. Thus, in effect providing the in vivo equivalent of the in vitro transient transfection assay. As the widespread use of in vivo electroporation has really only just begun, it is likely that the future will hold many more applications for this technology in basic research, biotechnology and clinical research areas.
Resumo:
We have developed a simple and robust transient expression system utilizing the 25 kDa branched cationic polymer polyethylenimine (PEI) as a vehicle to deliver plasmid DNA into suspension-adapted Chinese hamster ovary cells synchronized in G2/M phase of the cell cycle by anti-mitotic microtubule disrupting agents. The PEI-mediated transfection process was optimized with respect to PEI nitrogen to DNA phosphate molar ratio and the plasmid DNA mass to cell ratio using a reporter construct encoding firefly luciferase. Optimal production of luciferase was observed at a PEI N to DNA P ratio of 10:1 and 5 mug DNA 10(6) cells(-1). To manipulate transgene expression at mitosis, we arrested cells in G2/M phase of the cell cycle using the microtubule depolymerizing agent nocodazole. Using secreted human alkaline phosphatase (SEAP) and enhanced green fluorescent protein (eGFP) as reporters we showed that continued inclusion of nocodazole in cell culture medium significantly increased both transfection efficiency and reporter protein production. In the presence of nocodazole, greater than 90% of cells were eGFP positive 24 h post-transfection and qSEAP was increased almost fivefold, doubling total SEAP production. Under optimal conditions for PEI-mediated transfection, transient production of a recombinant chimeric IgG(4) encoded on a single vector was enhanced twofold by nocodazole, a final yield of approximately 5 mug mL(-1) achieved at an initial viable cell density of 1 x 10(6) cells mL(-1). The glycosylation of the recombinant antibody at Asn(297) was not significantly affected by nocodazole during transient production by this method. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Although hepatitis B surface antigen (HBsAg) per se is highly immunogenic, its use as a vector for the delivery of foreign cytotoxic T-lymphocyte (CTL) epitopes has met with little success because of constraints on HBsAg stability and secretion imposed by the insertion of foreign sequence into critical hydrophobic/amphipathic regions. Using a strategy entailing deletion of DNA encoding HBsAg-specific CTL epitopes and replacement with DNA encoding foreign CTL epitopes, we have derived chimeric HBsAg DNA immunogens which elicited effector and memory CTL responses in vitro, and pathogen- and tumor-protective responses in vivo, when the chimeric HBsAg DNAs were used to immunize mice. We further show that HBsAg DNA recombinant for both respiratory syncytial virus and human papillomavirus CTL epitopes elicited simultaneous responses to both pathogens. These data demonstrate the efficacy of HBsAg DNA as a vector for the delivery of disease-relevant protective CTL responses. They also suggest the applicability of the approach of deriving chimeric HBsAg DNA immunogens simultaneously encoding protective CTL epitopes for multiple diseases. The DNAs we tested formed chimeric HBsAg virus-like particles (VLPs). Thus, our results have implications for the development of vaccination strategies using either chimeric HBsAg DNA or VLP vaccines. HBsAg is the globally administered vaccine for hepatitis B virus infection, inviting its usage as a vector for the delivery of immunogens from other diseases.
Resumo:
Gateway technology is a powerful system for converting a single entry vector into a wide variety of expression vectors. We expressed recombinant influenza matrix protein M1 (FMP), a potent antigen for cytotoxic T cells, using the Gateway vector pET-DEST42 containing the FMP cDNA, and purified the expressed FMP as a single 32 kDa recombinant protein. N-terminal and internal protein sequencing, however, showed that the recombinant FMP contained an extra 10 amino acids fused to the N-terminal of native FMP. Further investigation of the DNA sequence adjacent to the 5'-FMP cDNA indicated that the TTG in the attB1 site (30bp upstream of the ATG in the 5'-FMP cDNA) behaved as a dominant translation start site, resulting in a 10 amino acid extension of the recombinant FMP. Thus, it is possible that recombinant proteins produced by this Gateway vector contain unexpected vector-derived peptides, which may affect experimental outcomes. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Allozyme and molecular sequence data from the malaria vector Anopheles flavirostris (Ludlow) (Diptera: Culicidae) were analysed from 34 sites throughout the Philippines, including the type locality, to test the hypothesis that this taxon is a single panmictic species. A finer-scaled allozyme study, of mainly Luzon samples, revealed no fixed genetic differences in sympatric sites and only low levels of variation. We obtained data from partial sequences for the internal transcribed spacer 2 (ITS2) (483 bp), the third domain (D3) (330 bp) of the 28S ribosomal DNA subunit and cytochrome c oxidase subunit I (COI) of mitochondrial DNA (261 bp). No sequence variation was observed for ITS2, only a one base pair difference was observed between Philippine and Indonesian D3 sequences and An. flavirostris sequences were unique, confirming their diagnostic value for this taxon. Sixteen COI haplotypes were identified, giving 25 parsimony informative sites. Neighbour-Joining, Maximum Parsimony, Maximum Likelihood and Bayesian phylogenetic analysis of COI sequences for An. flavirostris and outgroup taxa revealed strong branch support for the monophyly of An. flavirostris, thus confirming that Philippine populations of this taxon comprise a single separate species within the Minimus Subgroup of the Funestus Group. Variation in the behaviour of An. flavirostris is likely to be intraspecific rather than interspecific in origin. © 2006 The Royal Entomological Society.
Resumo:
Aim: To rapidly quantify hepatitis B virus (HBV) DNA by real-time PCR using efficient TaqMan probe and extraction methods of virus DNA. Methods: Three standards were prepared by cloning PCR products which targeted S, C and X region of HBV genome into pGEM-T vector respectively. A pair of primers and matched TaqMan probe were selected by comparing the copy number and the Ct values of HBV serum samples derived from the three different standard curves using certain serum DNA. Then the efficiency of six HBV DNA extraction methods including guanidinium isothiocyanate, proteinase K, NaI, NaOH lysis, alkaline lysis and simple boiling was analyzed in sample A, B and C by real-time PCR. Meanwhile, 8 clinical HBV serum samples were quantified. Results: The copy number of the same HBV serum sample originated from the standard curve of S, C and X regions was 5.7 × 104/ mL, 6.3 × 102/mL and 1.6 × 103/mL respectively. The relative Ct value was 26.6, 31.8 and 29.5 respectively. Therefore, primers and matched probe from S region were chosen for further optimization of six extraction methods. The copy number of HBV serum samples A, B and C was 3.49 × 109/mL, 2.08 × 106/mL and 4.40 × 107/mL respectively, the relative Ct value was 19.9, 30 and 26.2 in the method of NaOH lysis, which was the efficientest among six methods. Simple boiling showed a slightly lower efficiency than NaOH lysis. Guanidinium isothiocyanate, proteinase K and NaI displayed that the copy number of HBV serum sample A, B and C was around 105/ mL, meanwhile the Ct value was about 30. Alkaline failed to quantify the copy number of three HBV serum samples, Standard deviation (SD) and coefficient variation (CV) were very low in all 8 clinical HBV serum samples, showing that quantification of HBV DNA in triplicate was reliable and accurate. Conclusion: Real-time PCR based on optimized primers and TaqMan probe from S region in combination with NaOH lysis is a simple, rapid and accurate method for quantification of HBV serum DNA. © 2006 The WJG Press. All rights reserved.
Resumo:
Age is a critical determinant of the ability of most arthropod vectors to transmit a range of human pathogens. This is due to the fact that most pathogens require a period of extrinsic incubation in the arthropod host before pathogen transmission can occur. This developmental period for the pathogen often comprises a significant proportion of the expected lifespan of the vector. As such, only a small proportion of the population that is oldest contributes to pathogen transmission. Given this, strategies that target vector age would be expected to obtain the most significant reductions in the capacity of a vector population to transmit disease. The recent identification of biological agents that shorten vector lifespan, such as Wolbachia, entomopathogenic fungi and densoviruses, offer new tools for the control of vector-borne diseases. Evaluation of the efficacy of these strategies under field conditions will be possible due to recent advances in insect age-grading techniques. Implementation of all of these strategies will require extensive field evaluation and consideration of the selective pressures that reductions in vector longevity may induce on both vector and pathogen.
Resumo:
A spotted fever-like rickettsia was identified in a Hemaphysalis tick by polymerase chain reaction (PCR) amplification and sequencing of the 16S rDNA, ompA, and ompB genes. A comparison of these nucleotide sequences with those of other spotted fever group (SFG) rickettsiae revealed that the Hemaphysalis tick rickettsia was distinct from other previously reported strains. Phylogenetic analysis based on both ompA and ompB also indicates that the strain’s closest relatives are the agents of Thai tick typhus (Rickettsia honei strain TT-118) and Flinders Island spotted fever (R. honei). This study represents the first report of an R. honei-like agent from a Hemaphysalis tick in Australia and of a spotted fever group rickettsia from Cape York Peninsula, Queensland.
Resumo:
The endosymbiotic bacteria in the genus Wolbachia have been proposed as a potential candidate to deliver pathogen-blocking genes into natural populations of medically important insects. The successful application of Wolbachia in insect vector control depends on the ability of the agent to successfully invade and maintain itself at high frequency under field conditions. Here, we evaluated the prevalence of Wolbachia infections in a field population of the Wolbachia-superinfected mosquito Aedes albopictus. A field prevalence of 100% (n = 1,016) was found in a single population in eastern Thailand via polymerase chain reaction (PCR) testing of Wolbachia both from individual parent females and their corresponding F1 offspring. This is the first report of accurate Wolbachia prevalence in a field population of an insect disease vector. The prevalence of superinfection was estimated to be 99.41%. All single-infected individual mosquitoes (n = 6) were found to harbor group A Wolbachia. For this particular population, none was found to be single-infected with group B Wolbachia. Our results also show that PCR testing of field materials alone without checking F1 offspring overestimated the natural prevalence of single infection. Thus, the confirmation of infection status by means of F1 offspring was critical to the accurate estimates of Wolbachia prevalence under field conditions.
Resumo:
The extensive antigenic variation phenomena African trypanosomes display in their mammalian host have hampered efforts to develop effective vaccines against trypanosomiasis. Human disease management aims largely to treat infected hosts by chemotherapy, whereas control of animal diseases relies on reducing tsetse populations as well as on drug therapy. The control strategies for animal diseases are carried out and financed by livestock owners, who have an obvious economic incentive. Sustaining largely insecticide-based control at a local level and relying on drugs for treatment of infected hosts for a disease for which there is no evidence of acquired immunity could prove extremely costly in the long run. It is more likely that a combination of several methods in an integrated, phased and area-wide approach would be more effective in controlling these diseases and subsequently improving agricultural output. New approaches that are environmentally acceptable, efficacious and affordable are clearly desirable for control of various medically and agriculturally important insects including tsetse. Here, Serap Aksoy and colleagues discuss molecular genetic approaches to modulate tsetse vector competence.