19 resultados para DIGESTION

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model that describes the operation of a sequential leach bed process for anaerobic digestion of organic fraction of municipal solid waste (MSW) is developed and validated. This model assumes that ultimate mineralisation of the organic component of the waste occurs in three steps, namely solubilisation of particulate matter, fermentation to volatile organic acids (modelled as acetic acid) along with liberation of carbon dioxide and hydrogen, and methanogenesis from acetate and hydrogen. The model incorporates the ionic equilibrium equations arising due to dissolution of carbon dioxide, generation of alkalinity from breakdown of solids and dissociation of acetic acid. Rather than a charge balance, a mass balance on the hydronium and hydroxide ions is used to calculate pH. The flow of liquid through the bed is modelled as occurring through two zones-a permeable zone with high flushing rates and the other more stagnant. Some of the kinetic parameters for the biological processes were obtained from batch MSW digestion experiments. The parameters for flow model were obtained from residence time distribution studies conducted using tritium as a tracer. The model was validated using data from leach bed digestion experiments in which a leachate volume equal to 10% of the fresh waste bed volume was sequenced. The model was then tested, without altering any kinetic or flow parameters, by varying volume of leachate that is sequenced between the beds. Simulations for sequencing/recirculating 5 and 30% of the bed volume are presented and compared with experimental results. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compares process data with microscopic observations from an anaerobic digestion of organic particles. As the first part of the study, this article presents detailed observations of microbial biofilm architecture and structure in a 1.25-L batch digester where all particles are of an equal age. Microcrystalline cellulose was used as the sole carbon and energy source. The digestions were inoculated with either leachate from a 220-Lanaerobic municipal solid waste digester or strained rumen contents from a fistulated cow. The hydrolysis rate, when normalized by the amount of cellulose remaining in the reactor, was found to reach a constant value 1 day after inoculation with rumen fluid, and 3 days after inoculating with digester leachate. A constant value of a mass specific hydrolysis rate is argued to represent full colonization of the cellulose surface and first-order kinetics only apply after this point. Additionally, the first-order hydrolysis rate constant, once surfaces were saturated with biofilm, was found to be two times higher with a rumen inoculum, compared to a digester leachate inoculum. Images generated by fluorescence in situ hybridization (FISH) probing and confocal laser scanning microscopy show that the microbial communities involved in the anaerobic biodegradation process exist entirely within the biofilm. For the reactor conditions used in these experiments, the predominant methanogens exist in ball-shaped colonies within the biofilm. (C) 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study presented was to implement a process model to simulate the dynamic behaviour of a pilot-scale process for anaerobic two-stage digestion of sewage sludge. The model implemented was initiated to support experimental investigations of the anaerobic two-stage digestion process. The model concept implemented in the simulation software package MATLAB(TM)/Simulink(R) is a derivative of the IWA Anaerobic Digestion Model No.1 (ADM1) that has been developed by the IWA task group for mathematical modelling of anaerobic processes. In the present study the original model concept has been adapted and applied to replicate a two-stage digestion process. Testing procedures, including balance checks and 'benchmarking' tests were carried out to verify the accuracy of the implementation. These combined measures ensured a faultless model implementation without numerical inconsistencies. Parameters for both, the thermophilic and the mesophilic process stage, have been estimated successfully using data from lab-scale experiments described in literature. Due to the high number of parameters in the structured model, it was necessary to develop a customised procedure that limited the range of parameters to be estimated. The accuracy of the optimised parameter sets has been assessed against experimental data from pilot-scale experiments. Under these conditions, the model predicted reasonably well the dynamic behaviour of a two-stage digestion process in pilot scale. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely accepted that cellulose is the rate-limiting substrate in the anaerobic digestion of organic solid wastes and that cellulose solubilisation is largely mediated by surface attached bacteria. However, little is known about the identity or the ecophysiology of cellulolytic microorganisms from landfills and anaerobic digesters. The aim of this study was to investigate an enriched cellulolytic microbial community from an anaerobic batch reactor. Chemical oxygen demand balancing was used to calculate the cellulose solubilisation rate and the degree of cellulose solubilisation. Fluorescence in situ hybridisation (FISH) was used to assess the relative abundance and physical location of three groups of bacteria belonging to the Clostridium lineage of the Firmicutes that have been implicated as the dominant cellulose degraders in this system. Quantitation of the relative abundance using FISH showed that there were changes in the microbial community structure throughout the digestion. However, comparison of these results to the process data reveals that these changes had no impact on the cellulose solubilisation in the reactor. The rate of cellulose solubilisation was approximately stable for much of the digestion despite changes in the cellulolytic population. The solubilisation rate appears to be most strongly affected by the rate of surface area colonisation and the biofilm architecture with the accepted model of first order kinetics due to surface area limitation applying only when the cellulose particles are fully covered with a thin layer of cells. (c) 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-stage thermophilic-mesophilic anaerobic digestion pilot-plant was operated solely on waste activated sludge (WAS) from a biological nutrient removal (BNR) plant. The first-stage thermophilic reactor (HRT 2 days) was operated at 47, 54 and 60 degrees C. The second-stage mesophilic digester (HRT 15 days) was held at a constant temperature of 36-37 degrees C. For comparison with a single-stage mesophilic process, the mesophilic digester was also operated separately with an HRT of 17 days and temperature of 36-37 degrees C. The results showed a truly thermophilic stage (60 degrees C) was essential to achieve good WAS degradation. The lower thermophilic temperatures examined did not offer advantages over single-stage mesophilic treatment in terms of COD and VS removal. At a thermophilic temperature of 60 degrees C, the plant achieved 35% VS reduction, representing a 46% increase compared to the single-stage mesophilic digester. This is a significant level of degradation which could make such a process viable in situations where there is no primary sludge generated. The fate of the biologically stored phosphorus in this BNR sludge was also investigated. Over 80% of the incoming phosphorus remained bound up with the solids and was not released into solution during the WAS digestion. Therefore only a small fraction of phosphorus would be recycled to the main treatment plant with the dewatering stream.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anaerobic digestion of lignocellulosic material is carried out effectively in many natural microbial ecosystems including the rumen. A rumen-enhanced anaerobic sequencing batch reactor was used to investigate cellulose degradation to give analysis of overall process stoichiometry and rates of hydrolysis. The reactor achieved VFA production rates of 207-236 mg COD/L/h at a loading rate of 10 g/L/d. Overloading of the reactor resulted in elevated production of propionic acid, and on occasion, the presence of succinic acid. With improvements in mixing and solids wasting, the anaerobic sequencing batch reactor system could enable full-scale application of the process for treatment of cellulosic waste material.