91 resultados para Crystallization temperature

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The importance of sticky behaviour of amorphous food powders has been recognized over many decades in the food industry due to its influence on process and handling abilities and quality of the powders. This paper emphasizes the role of stickiness in the food powder industry as well as reviews the stickiness characterization techniques developed to date. This paper also attempts to correlate the stickiness behaviour of food powders to the instrumental analysis such as glass transition temperature. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystallization behavior and crystallization kinetics Of (CU60Zr30Ti10)(99)Sn-1 bulk metallic glass was studied by X-ray diffractometry and differential scanning calorimetry. It was found that a two-stage crystallization took place during continuous heating of the bulk metallic glass. Both the glass transition temperature T-g and the crystallization peak temperatures T-p displayed a strong dependence on the heating rate. The activation energy was determined by the Kissinger analysis method. In the first-stage of the crystallization, the transformation of the bulk metallic glass to the phase one occurred with an activation energy of 386 kJ/mol; in the second-stage, the formation of the phase two took place at an activation energy of 381 kJ/mol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature is an important parameter controlling protein crystal growth. A new temperature-screening system (Thermo-screen) is described consisting of a gradient thermocycler fitted with a special crystallization-plate adapter onto which a 192-well sitting-drop crystallization plate can be mounted (temperature range 277-372 K; maximum temperature gradient 20 K; interval precision 0.3 K). The system allows 16 different conditions to be monitored simultaneously over a range of 12 temperatures and is well suited to conduct wide (similar to 20 K) and fine (similar to 3 K) temperature-optimization screens. It can potentially aid in the determination of temperature phase diagrams and run more complex temperature-cycling experiments for seeding and crystal growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford, is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a time-dependent projected Gross-Pitaevskii equation to describe a partially condensed homogeneous Bose gas, and find that this equation will evolve randomized initial wave functions to equilibrium. We compare our numerical data to the predictions of a gapless, second order theory of Bose-Einstein condensation [S. A. Morgan, J. Phys. B 33, 3847 (2000)], and find that we can determine a temperature when the theory is valid. As the Gross-Pitaevskii equation is nonperturbative, we expect that it can describe the correct thermal behavior of a Bose gas as long as all relevant modes are highly occupied. Our method could be applied to other boson fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the two-particle local correlation for an interacting 1D Bose gas at finite temperature and classify various physical regimes. We present the exact numerical solution by using the Yang-Yang equations and Hellmann-Feynman theorem and develop analytical approaches. Our results draw prospects for identifying the regimes of coherent output of an atom laser, and of finite-temperature “fermionization” through the measurement of the rates of two-body inelastic processes, such as photoassociation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the temperature dependence of the uniform susceptibility of spin-half quantum antiferromagnets on spatially anisotropic triangular lattices, using high-temperature series expansions. We consider a model with two exchange constants J1 and J2 on a lattice that interpolates between the limits of a square lattice (J1=0), a triangular lattice (J2=J1), and decoupled linear chains (J2=0). In all cases, the susceptibility, which has a Curie-Weiss behavior at high temperatures, rolls over and begins to decrease below a peak temperature Tp. Scaling the exchange constants to get the same peak temperature shows that the susceptibilities for the square lattice and linear chain limits have similar magnitudes near the peak. Maximum deviation arises near the triangular-lattice limit, where frustration leads to much smaller susceptibility and with a flatter temperature dependence. We compare our results to the inorganic materials Cs2CuCl4 and Cs2CuBr4 and to a number of organic molecular crystals. We find that the former (Cs2CuCl4 and Cs2CuBr4) are weakly frustrated and their exchange parameters determined through the temperature dependence of the susceptibility are in agreement with neutron-scattering measurements. In contrast, the organic materials considered are strongly frustrated with exchange parameters near the isotropic triangular-lattice limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analysis of previously published measurements of the London penetration depth of layered organic superconductors. The predictions of the BCS theory of superconductivity are shown to disagree with the measured zero temperature, in plane, London penetration depth by up to two orders of magnitude. We find that fluctuations in the phase of the superconducting order parameter do not determine the superconducting critical temperature as the critical temperature predicted for a Kosterlitz–Thouless transition is more than an order of magnitude greater than is found experimentally for some materials. This places constraints on theories of superconductivity in these materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical study is reported to investigate both the First and the Second Law of Thermodynamics for thermally developing forced convection in a circular tube filled by a saturated porous medium, with uniform wall temperature, and with the effects of viscous dissipation included. A theoretical analysis is also presented to study the problem for the asymptotic region applying the perturbation solution of the Brinkman momentum equation reported by Hooman and Kani [1]. Expressions are reported for the temperature profile, the Nusselt number, the Bejan number, and the dimensionless entropy generation rate in the asymptotic region. Numerical results are found to be in good agreement with theoretical counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freshwater turtle eggs are normally subjected to fluctuations in incubation temperature during natural incubation. Because of this, developing embryos may make physiological adjustments to growth and metabolism in response to incubation at different temperatures. I tested this hypothesis by incubating eggs of the Brisbane river turtle Emydura signata under four different temperature regimes, constant temperatures of 24 degrees C and 31 degrees C throughout incubation, and two swapped-temperature treatments where incubation temperature was changed approximately halfway through incubation. Incubation at 31 degrees C took 42 d, and incubation at 24 degrees C look 78 d, with intermediate incubation periods for the swapped-temperature treatments. Hatchling mass, hatchling size, and total oxygen consumed during development were similar for all incubation regimes. The pattern of oxygen consumption during the last phase of incubation as reflected by rate of increase of oxygen consumption, peak oxygen consumption, and fall in oxygen consumption before hatching was determined solely by the incubation temperature during the last phase of incubation; that is, incubation temperature during the first phase of incubation had no influence on these factors. Thus there is no evidence of temperature compensation in growth or development during embryonic development of E. signata eggs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of skin temperature and hydration status has been suggested by some researchers as a common cause of variation in bioimpedance measurements of the body. This paper details a simple method of measuring the transverse impedance of the skin. The measured resistance and reactance was found to decrease by 35% and 18% for an increase of 20 degrees C. Similarly a decrease in resistance and reactance of 20% and 25% respectively was detected after hydration of the skin. However, the changes in skin temperature and hydration were found to have no significant effect on the whole body bioimpedance measurements using the standard tetra-polar electrode technique. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Honey was co-crystallized with a sucrose syrup at 128 degrees C using a sucrose:honey proportion of 90:10, 85:15 and 80:20. The first two proportions produced granular co-crystals, whereas the ratio of 80:20 produced a semi-solid product. The granules were relatively free flowing with an angle of repose 38.5-39.5 degrees. Gas chromatography was used to compare die differences in four flavour compounds: 2.3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, HMF, 6-methyheptyl prop-2-enoate and 3-hydroxy-4-phenylbutan-2-one. Gas chromatographic results indicated some minor differences in the quantity of flavour volatiles in honey relative to the co-crystallized product. (C) 1998 Academic Press Limited.