36 resultados para Computational tools
em University of Queensland eSpace - Australia
Resumo:
Allergy is a major cause of morbidity worldwide. The number of characterized allergens and related information is increasing rapidly creating demands for advanced information storage, retrieval and analysis. Bioinformatics provides useful tools for analysing allergens and these are complementary to traditional laboratory techniques for the study of allergens. Specific applications include structural analysis of allergens, identification of B- and T-cell epitopes, assessment of allergenicity and cross-reactivity, and genome analysis. In this paper, the most important bioinformatic tools and methods with relevance to the study of allergy have been reviewed.
Resumo:
The prediction of regulatory elements is a problem where computational methods offer great hope. Over the past few years, numerous tools have become available for this task. The purpose of the current assessment is twofold: to provide some guidance to users regarding the accuracy of currently available tools in various settings, and to provide a benchmark of data sets for assessing future tools.
Resumo:
Student attitudes towards a subject affect their learning. For students in physics service courses, relevance is emphasised by vocational applications. A similar strategy is being used for students who aspire to continued study of physics, in an introduction to fundamental skills in experimental physics – the concepts, computational tools and practical skills involved in appropriately obtaining and interpreting measurement data. An educational module is being developed that aims to enhance the student experience by embedding learning of these skills in the practicing physicist’s activity of doing an experiment (gravity estimation using a rolling pendulum). The group concentrates on particular skills prompted by challenges such as: • How can we get an answer to our question? • How good is our answer? • How can it be improved? This explicitly provides students the opportunity to consider and construct their own ideas. It gives them time to discuss, digest and practise without undue stress, thereby assisting them to internalise core skills. Design of the learning activity is approached in an iterative manner, via theoretical and practical considerations, with input from a range of teaching staff, and subject to trials of prototypes.
Resumo:
Background: A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term patholog to mean a homolog of a human disease-related gene encoding a product ( transcript, anti-sense or protein) potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. Results: Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity ( 70 - 85% identity) to known human-disease genes. Using a newly developed biological information extraction and annotation tool ( FACTS) in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic ( 53%), hereditary ( 24%), immunological ( 5%), cardio-vascular (4%), or other (14%), disorders. Conclusions: Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets.
Resumo:
The explosive growth in biotechnology combined with major advancesin information technology has the potential to radically transformimmunology in the postgenomics era. Not only do we now have readyaccess to vast quantities of existing data, but new data with relevanceto immunology are being accumulated at an exponential rate. Resourcesfor computational immunology include biological databases and methodsfor data extraction, comparison, analysis and interpretation. Publiclyaccessible biological databases of relevance to immunologists numberin the hundreds and are growing daily. The ability to efficientlyextract and analyse information from these databases is vital forefficient immunology research. Most importantly, a new generationof computational immunology tools enables modelling of peptide transportby the transporter associated with antigen processing (TAP), modellingof antibody binding sites, identification of allergenic motifs andmodelling of T-cell receptor serial triggering.
Resumo:
Species extinctions and the deterioration of other biodiversity features worldwide have led to the adoption of systematic conservation planning in many regions of the world. As a consequence, various software tools for conservation planning have been developed over the past twenty years. These, tools implement algorithms designed to identify conservation area networks for the representation and persistence of biodiversity features. Budgetary, ethical, and other sociopolitical constraints dictate that the prioritized sites represent biodiversity with minimum impact on human interests. Planning tools are typically also used to satisfy these criteria. This chapter reviews both the concepts and technical choices that underlie the development of these tools. Conservation planning problems can be formulated as optimization problems, and we evaluate the suitability of different algorithms for their solution. Finally, we also review some key issues associated with the use of these tools, such as computational efficiency, the effectiveness of taxa and abiotic parameters at choosing surrogates for biodiversity, the process of setting explicit targets of representation for biodiversity surrogates, and
Resumo:
This paper provides a computational framework, based on Defeasible Logic, to capture some aspects of institutional agency. Our background is Kanger-Lindahl-P\"orn account of organised interaction, which describes this interaction within a multi-modal logical setting. This work focuses in particular on the notions of counts-as link and on those of attempt and of personal and direct action to realise states of affairs. We show how standard Defeasible Logic can be extended to represent these concepts: the resulting system preserves some basic properties commonly attributed to them. In addition, the framework enjoys nice computational properties, as it turns out that the extension of any theory can be computed in time linear to the size of the theory itself.
Resumo:
This paper reviews a wide range of tools for comprehensive sustainability assessments at whole tourism destinations, covering socio-cultural, economic and environmental issues. It considers their strengths, weaknesses and site specific applicability. It is intended to facilitate their selection (and combination where necessary). Tools covered include Sustainability Indicators, Environmental Impact Assessment, Life Cycle Assessment, Environmental Audits, Ecological Footprints, Multi-Criteria Analysis and Adaptive Environmental Assessment. Guidelines for evaluating their suitability for specific sites and situations are given as well as examples of their use.
Resumo:
Traditional waste stabilisation pond (WSP) models encounter problems predicting pond performance because they cannot account for the influence of pond features, such as inlet structure or pond geometry, on fluid hydrodynamics. In this study, two dimensional (2-D) computational fluid dynamics (CFD) models were compared to experimental residence time distributions (RTD) from literature. In one of the-three geometries simulated, the 2-D CFD model successfully predicted the experimental RTD. However, flow patterns in the other two geometries were not well described due to the difficulty of representing the three dimensional (3-D) experimental inlet in the 2-D CFD model, and the sensitivity of the model results to the assumptions used to characterise the inlet. Neither a velocity similarity nor geometric similarity approach to inlet representation in 2-D gave results correlating with experimental data. However. it was shown that 2-D CFD models were not affected by changes in values of model parameters which are difficult to predict, particularly the turbulent inlet conditions. This work suggests that 2-D CFD models cannot be used a priori to give an adequate description of the hydrodynamic patterns in WSP. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper describes U2DE, a finite-volume code that numerically solves the Euler equations. The code was used to perform multi-dimensional simulations of the gradual opening of a primary diaphragm in a shock tube. From the simulations, the speed of the developing shock wave was recorded and compared with other estimates. The ability of U2DE to compute shock speed was confirmed by comparing numerical results with the analytic solution for an ideal shock tube. For high initial pressure ratios across the diaphragm, previous experiments have shown that the measured shock speed can exceed the shock speed predicted by one-dimensional models. The shock speeds computed with the present multi-dimensional simulation were higher than those estimated by previous one-dimensional models and, thus, were closer to the experimental measurements. This indicates that multi-dimensional flow effects were partly responsible for the relatively high shock speeds measured in the experiments.
Resumo:
Computer models can be combined with laboratory experiments for the efficient determination of (i) peptides that bind MHC molecules and (ii) T-cell epitopes. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures. This requires the definition of standards and experimental protocols for model application. We describe the requirements for validation and assessment of computer models. The utility of combining accurate predictions with a limited number of laboratory experiments is illustrated by practical examples. These include the identification of T-cell epitopes from IDDM-, melanoma- and malaria-related antigens by combining computational and conventional laboratory assays. The success rate in determining antigenic peptides, each in the context of a specific HLA molecule, ranged from 27 to 71%, while the natural prevalence of MHC-binding peptides is 0.1-5%.
Resumo:
In this and a preceding paper, we provide an introduction to the Fujitsu VPP range of vector-parallel supercomputers and to some of the computational chemistry software available for the VPP. Here, we consider the implementation and performance of seven popular chemistry application packages. The codes discussed range from classical molecular dynamics to semiempirical and ab initio quantum chemistry. All have evolved from sequential codes, and have typically been parallelised using a replicated data approach. As such they are well suited to the large-memory/fast-processor architecture of the VPP. For one code, CASTEP, a distributed-memory data-driven parallelisation scheme is presented. (C) 2000 Published by Elsevier Science B.V. All rights reserved.