12 resultados para Chlorination.

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorination was investigated as a treatment option for degrading and thus removing saxitoxins (paralytic shellfish poisons, PSPs) produced by cyanobacteria (blue-green algae) from water. It was found to be effective with the order of ease of degradation of the saxitoxins being GTX5 (B1) similar to dcSTX > STX > GTX3 similar to C2 > C1 > GTX2. However the effectiveness of chlorine was pH dependent. Degradation as a function of pH was not linear with the degree of degradation increasing rapidly at around pH 7.5. At pH 9 > 90% removal was possible provided a residual of 0.5 mg l(-1) free chlorine was present after 30 min contact time. The more effective degradation at higher pH was unexpected as chlorine is known to be a weaker oxidant under these conditions. The more effective degradation, then, must be due to the toxins, which are ionisable molecules, being present in a form at higher pH which is more susceptible to oxidation. The feasibility of using chlorine to remove saxitoxins during water treatment will therefore depend strongly on the pH of the water being chlorinated. Degradation may be improved by pH adjustment but may not be a practical solution. Although saxitoxins were degraded in that the parent compounds were not detected by chemical analysis, there is no indication as to the nature of the degradation products. However, acute toxicity as determined by the mouse bioassay was eliminated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cylindrospermopsin (CYN), a potent cyanobacterial hepatotoxin produced by Cylindrospermopsis raciborskii and other cyanobacteria, is regularly found in water supplies in many parts of the world and has been associated with the intoxication of humans and livestock.Water treatment via chlorination can degrade the toxin effectively but result in the production of several byproducts. In this study, male and female Balb/c mice were injected via the intraperitoneal (IP) route with a single dose of 10 mg/kg 5-chlorouracil and 10 mg/kg 5-chloro-6-hydroxymethyluracil; these two compounds are the predicted chlorinated degradation products of CYN.DNA was isolated from the mouse livers and examined for strand breakage by alkaline gel electrophoresis (pH 12). The median molecular length (MML) of the DNA distributed in the gel was determined by estimating the midpoint of the DNA size distribution by densitometry. The toxicity of 5-chlorouracil (as measured by DNA strand breakage) was significantly influenced by time from dosing. There was no significant difference in MML between mice dosed with 5-chloro-6-hydroxymethyluracil and the controls. In another experiment, mice were dosed with 0, 0.1, 1, 10 and 100 mg/kg body weight 5-chlorouracil and 0, 0.1, 1, 10 and 20 mg/kg 5-chloro-6-hydroxymethyluracil via IP injection. The heart, liver, kidney, lung and spleen were removed, fixed and examined under electron microscopy. Liver was the main target organ. The EM results revealed marked distortion on the nuclear membrane of liver cells in mice dosed with 1.0 mg/kg 5-chlorouracil or 10 mg/kg 5-chloro-6-hydroxymethyluracil, or higher.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fresh water cyanobacterium Anabaena circinalis produces saxitoxin (STX) and several other toxins with similar basic structural skeleton. Collectively, these toxins are known as Paralytic Shellfish Poisons or PSPs. These toxins are water soluble and can escape into the water body after cell lysis. The presence of these toxins in drinking water is a serious threat to human health. The present work has shown that Paralytic Shellfish Poisons (PSPs) in drinking water can be removed by chlorination at high pH (>9.0), provided a residual of 0.5 mg/L of free chlorine is present after 30 minutes of contact time.