2 resultados para Chlorination.
em CaltechTHESIS
Resumo:
Theoretical and experimental investigations of charge-carrier dynamics at semiconductor/liquid interfaces, specifically with respect to interfacial electron transfer and surface recombination, are presented.
Fermi's golden rule has been used to formulate rate expressions for charge transfer of delocalized carriers in a nondegenerately doped semiconducting electrode to localized, outer-sphere redox acceptors in an electrolyte phase. The treatment allows comparison between charge-transfer kinetic data at metallic, semimetallic, and semiconducting electrodes in terms of parameters such as the electronic coupling to the electrode, the attenuation of coupling with distance into the electrolyte, and the reorganization energy of the charge-transfer event. Within this framework, rate constant values expected at representative semiconducting electrodes have been determined from experimental data for charge transfer at metallic electrodes. The maximum rate constant (i.e., at optimal exoergicity) for outer-sphere processes at semiconducting electrodes is computed to be in the range 10-17-10-16 cm4 s-1, which is in excellent agreement with prior theoretical models and experimental results for charge-transfer kinetics at semiconductor/liquid interfaces.
Double-layer corrections have been evaluated for semiconductor electrodes in both depletion and accumulation conditions. In conjuction with the Gouy-Chapman-Stern model, a finite difference approach has been used to calculate potential drops at a representative solid/liquid interface. Under all conditions that were simulated, the correction to the driving force used to evaluate the interfacial rate constant was determined to be less than 2% of the uncorrected interfacial rate constant.
Photoconductivity decay lifetimes have been obtained for Si(111) in contact with solutions of CH3OH or tetrahydrofuran containing one-electron oxidants. Silicon surfaces in contact with electrolyte solutions having Nernstian redox potentials > 0 V vs. SCE exhibited low effective surface recombination velocities regardless of the different surface chemistries. The formation of an inversion layer, and not a reduced density of electrical trap sites on the surface, is shown to be responsible for the long charge-carrier lifetimes observed for these systems. In addition, a method for preparing an air-stable, low surface recombination velocity Si surface through a two-step, chlorination/alkylation reaction is described.
Resumo:
The use of spiro [2.4]hepta-4,6-diene-1-methanol 7 as a general precursor for the synthesis of highly functionalized cyclopentyl rings is described. Diene 7 was converted to its silyl protected 4-nitrile derivative 24 in 46% overall yield. The cyclopropyl ring of 24 reacted with soft carbanionic nucleophiles to give ring opened homo-conjugate addition products 25a-h in 76-97% yield without loss of optical purity. The addition products could be further manipulated by selective mono-hydrogenation to give 1,2 substituted cyclopentenes 26a-e in 85-96% yield.
Diene 7 was used as a starting material for studies directed toward the synthesis of the stereochemically dense chloro-cyclopentyl core of palau'amine 1. Two advanced intermediates 50 and 72 were synthesized. Attempts to effect intramolecular chlorine transfer with 50 were unsuccessful. Attempted intramolecular chlorine transfer with 72 led, instead, to an oxygenated species resulting from oxygen radical trapping.
The enantioselective synthesis of the stereochemically dense chloro-cyclopenty l core of axinellamines A-D 2-5 starting from 7 is also described. The core is synthesized in 4.6% yield over 24 steps. Nakamura's radical dehalogenative hydroxylation is applied for the first time to a cyclopropyl carbonyl iodide to give the ring-opened product in 86% yield. Bolm's meso-anhydride desymmetrization is used to introduce asymmetry in a norbornene intermediate. The final step is a diastereoselective intermolecular chlorination using Barton's methodology to achieve chlorine transfer in 76% yield.