149 resultados para Chemical processes.

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of ionizing radiation in different compositions of polymer gel dosimeters are investigated using FT-Raman spectroscopy and NMR T-2 relaxation times. The dosimeters are manufactured from different concentrations of comonomers (acrylamide and N,N'-methylene-bis-acrylamide) dispersed in different concentrations of an aqueous gelatin matrix. Results are analysed using a model of fast exchange of magnetization between three proton pools. The fraction of protons in each pool is determined using the known chemical composition of the dosimeter and FT-Raman spectroscopy. Based on these results, the physical and chemical processes in interplay in the dosimeters are examined in view of their effect on the changes in T-2 The precipitation of growing macroradicals and the scavenging of free radicals by gelatin are used to explain the rate of polymerization. The model describes the changes in T-2 as a function of the absorbed dose up to 50 Gy for the different compositions. This is expected to aid the theoretical design of new, more efficient dosimeters, since it was demonstrated that the optimum dosimeter (i.e, with the lowest dose resolution) must have a range of relaxation times which match the range of T-2 values which can be determined with the lowest uncertainty using an MRI scanner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The finite element method is used to simulate coupled problems, which describe the related physical and chemical processes of ore body formation and mineralization, in geological and geochemical systems. The main purpose of this paper is to illustrate some simulation results for different types of modelling problems in pore-fluid saturated rock masses. The aims of the simulation results presented in this paper are: (1) getting a better understanding of the processes and mechanisms of ore body formation and mineralization in the upper crust of the Earth; (2) demonstrating the usefulness and applicability of the finite element method in dealing with a wide range of coupled problems in geological and geochemical systems; (3) qualitatively establishing a set of showcase problems, against which any numerical method and computer package can be reasonably validated. (C) 2002 Published by Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sophisticated style of mentoring has been found to be essential to support engineering student teams undertaking technically demanding, real-world problems as part of a Project-Centred Curriculum (PCC) at The University of Queensland. The term ‘triple-objective’ mentoring was coined to define mentoring that addresses not only the student’s technical goal achievement but also their time and team management. This is achieved through a number of formal mentor meetings that are informed by a confidential instrument which requires students to individually reflect on team processes prior to the meeting, and a checklist of technical requirements against which the interim student team progress and achievements are assessed. Triple-objective mentoring requires significant time input and coordination by the academic but has been shown to ensure effective student team work and learning undiminished by team dysfunction. Student feedback shows they value the process and agree that the tools developed to support the process are effective in developing and assessing team work and skills with average scores mostly above 3 on a four point scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ex vivo hematopoiesis is increasingly used for clinical applications. Models of ex vivo hematopoiesis are required to better understand the complex dynamics and to optimize hematopoietic culture processes. A general mathematical modeling framework is developed which uses traditional chemical engineering metaphors to describe the complex hematopoietic dynamics. Tanks and tubular reactors are used to describe the (pseudo-) stochastic and deterministic elements of hematopoiesis, respectively. Cells at any point in the differentiation process can belong to either an immobilized, inert phase (quiescent cells) or a mobile, active phase (cycling cells). The model describes five processes: (1) flow (differentiation), (2) autocatalytic formation (growth),(3) degradation (death), (4) phase transition from immobilized to mobile phase (quiescent to cycling transition), and (5) phase transition from mobile to immobilized phase (cycling to quiescent transition). The modeling framework is illustrated with an example concerning the effect of TGF-beta 1 on erythropoiesis. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a theoretical model of flow and chemical transport processes in subterranean estuaries (unconfined brackish groundwater aquifers at the ocean-land interface). The model shows that groundwater circulation and oscillating flow, caused by wave setup and tide, may constitute up to 96% of submarine groundwater discharge (SGWD) compared with 4% due to the net groundwater discharge. While these local flow processes do not change the total amount of land-derived chemical input to the ocean over a long period (e.g., yearly), they induce fluctuations of the chemical transfer rate as the aquifer undergoes saltwater intrusion. This may result in a substantial increase in chemical fluxes to the ocean over a short period (e.g., monthly and by a factor of 20 above the averaged level), imposing a possible threat to the marine environment. These results are essentially consistent with the experimental findings of Moore [1996] and have important implications for coastal resources management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the analysis of accelerated aged insulation samples to investigate the degradation processes observed in the insulation from aged transformers. Short term accelerated ageing experiments were performed on paper wrapped insulated conductors and on pressboard samples. The condition of aged insulation samples was investigated by two relatively new diagnostic techniques: (a) measurements of interfacial polarization spectra by a DC method (b) measurements of molecular weight and its distribution by gel permeation chromatography. Several other electrical properties of the paper/pressboard samples were also studied. Possible correlations have been investigated among the different measured properties. The GPC results have been used to predict how molecular weights change with temperature and time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dynamic modelling methodology, which combines on-line variable estimation and parameter identification with physical laws to form an adaptive model for rotary sugar drying processes, is developed in this paper. In contrast to the conventional rate-based models using empirical transfer coefficients, the heat and mass transfer rates are estimated by using on-line measurements in the new model. Furthermore, a set of improved sectional solid transport equations with localized parameters is developed in this work to reidentified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.place the global correlation for the computation of solid retention time. Since a number of key model variables and parameters are identified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with non-Markovian behavior in atomic systems coupled to a structured reservoir of quantum electromagnetic field modes, with particular relevance to atoms interacting with the field in high-Q cavities or photonic band-gap materials. In cases such as the former, we show that the pseudomode theory for single-quantum reservoir excitations can be obtained by applying the Fano diagonalization method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two, and many discrete quasimodes are made. For a simple photonic band-gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Petrov-Galerkin methods are known to be versatile techniques for the solution of a wide variety of convection-dispersion transport problems, including those involving steep gradients. but have hitherto received little attention by chemical engineers. We illustrate the technique by means of the well-known problem of simultaneous diffusion and adsorption in a spherical sorbent pellet comprised of spherical, non-overlapping microparticles of uniform size and investigate the uptake dynamics. Solutions to adsorption problems exhibit steep gradients when macropore diffusion controls or micropore diffusion controls, and the application of classical numerical methods to such problems can present difficulties. In this paper, a semi-discrete Petrov-Galerkin finite element method for numerically solving adsorption problems with steep gradients in bidisperse solids is presented. The numerical solution was found to match the analytical solution when the adsorption isotherm is linear and the diffusivities are constant. Computed results for the Langmuir isotherm and non-constant diffusivity in microparticle are numerically evaluated for comparison with results of a fitted-mesh collocation method, which was proposed by Liu and Bhatia (Comput. Chem. Engng. 23 (1999) 933-943). The new method is simple, highly efficient, and well-suited to a variety of adsorption and desorption problems involving steep gradients. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wet agglomeration processes have traditionally been considered an empirical art, with great difficulties in predicting and explaining observed behaviour. Industry has faced a range of problems including large recycle ratios, poor product quality control, surging and even the total failure of scale up from laboratory to full scale production. However, in recent years there has been a rapid advancement in our understanding of the fundamental processes that control granulation behaviour and product properties. This review critically evaluates the current understanding of the three key areas of wet granulation processes: wetting and nucleation, consolidation and growth, and breakage and attrition. Particular emphasis is placed on the fact that there now exist theoretical models which predict or explain the majority of experimentally observed behaviour. Provided that the correct material properties and operating parameters are known, it is now possible to make useful predictions about how a material will granulate. The challenge that now faces us is to transfer these theoretical developments into industrial practice. Standard, reliable methods need to be developed to measure the formulation properties that control granulation behaviour, such as contact angle and dynamic yield strength. There also needs to be a better understanding of the flow patterns, mixing behaviour and impact velocities in different types of granulation equipment. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laboratory-scale sequencing batch reactors (SBRs) as models for wastewater treatment processes were used to identify glycogen-accumulating organisms (GAOs), which are thought to be responsible for the deterioration of enhanced biological phosphorus removal (EBPR). The SBRs (called Q and T), operated under alternating anaerobic-aerobic conditions typical for EBPR, generated mixed microbial communities (sludges) demonstrating the GAO phenotype. Intracellular glycogen and poly-beta-hydroxyalkanoate (PHA) transformations typical of efficient EBPR occurred but polyphosphate was not bioaccumulated and the sludges contained 1.8% P (sludge Q) and 1.5% P (sludge T). 16S rDNA clone libraries were prepared from DNA extracted from the Q and T sludges. Clone inserts were grouped into operational taxonomic units (OTUs) by restriction fragment length polymorphism banding profiles. OTU representatives were sequenced and phylogenetically analysed. The Q sludge library comprised four OTUs and all six determined sequences were 99.7% identical, forming a cluster in the gamma-Proteobacteria radiation. The T sludge library comprised eight OTUs and the majority of clones were Acidobacteria subphylum 4 (49% of the library) and candidate phylum OPU (39% of the library). One OTU (two clones, of which one was sequenced) was in the gamma-Proteobacteria radiation with 95% sequence identity to the Q sludge clones. Oligonucleotide probes (called GAOQ431 and GAOQ989) were designed from the gamma-Proteobacteria clone sequences for use in fluorescence in situ hybridization (FISH); 92 % of the Q sludge bacteria and 28 % of the T sludge bacteria bound these probes in FISH. FISH and post-FISH chemical staining for PHA were used to determine that bacteria from a novel gamma-Proteobacteria cluster were phenotypically GAOs in one laboratory-scale SBR and two fullscale wastewater treatment plants. It is suggested that the GAOs from the novel cluster in the gamma-Proteobacteria radiation be named 'Candidatus Competibacter phosphatis'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of the new TOGA (titration and off-gas analysis) sensor for the detailed study of biological processes in wastewater treatment systems is outlined. The main innovation of the sensor is the amalgamation of titrimetric and off-gas measurement techniques. The resulting measured signals are: hydrogen ion production rate (HPR), oxygen transfer rate (OTR), nitrogen transfer rate (NTR), and carbon dioxide transfer rate (CTR). While OTR and NTR are applicable to aerobic and anoxic conditions, respectively, HPR and CTR are useful signals under all of the conditions found in biological wastewater treatment systems, namely, aerobic, anoxic and anaerobic. The sensor is therefore a powerful tool for studying the key biological processes under all these conditions. A major benefit from the integration of the titrimetric and off-gas analysis methods is that the acid/base buffering systems, in particular the bicarbonate system, are properly accounted for. Experimental data resulting from the TOGA sensor in aerobic, anoxic, and anaerobic conditions demonstrates the strength of the new sensor. In the aerobic environment, carbon oxidation (using acetate as an example carbon source) and nitrification are studied. Both the carbon and ammonia removal rates measured by the sensor compare very well with those obtained from off-line chemical analysis. Further, the aerobic acetate removal process is examined at a fundamental level using the metabolic pathway and stoichiometry established in the literature, whereby the rate of formation of storage products is identified. Under anoxic conditions, the denitrification process is monitored and, again, the measured rate of nitrogen gas transfer (NTR) matches well with the removal of the oxidised nitrogen compounds (measured chemically). In the anaerobic environment, the enhanced biological phosphorus process was investigated. In this case, the measured sensor signals (HPR and CTR) resulting from acetate uptake were used to determine the ratio of the rates of carbon dioxide production by competing groups of microorganisms, which consequently is a measure of the activity of these organisms. The sensor involves the use of expensive equipment such as a mass spectrometer and requires special gases to operate, thus incurring significant capital and operational costs. This makes the sensor more an advanced laboratory tool than an on-line sensor. (C) 2003 Wiley Periodicals, Inc.