6 resultados para Cauchy singular integral-equation
em University of Queensland eSpace - Australia
Resumo:
A new method is presented here for the systematic design of biplanar shielded shim and gradient coils, for use in magnetic resonance imaging (MRI) and other applications. The desired target field interior to the coil is specified in advance, and a winding pattern is then designed to produce a field that matches the target as closely as possible. Both gradient and shim coils can be designed by this approach, and the target region can be located asymmetrically within the coil. The interior target field may be matched at two or more interior locations, to improve accuracy. When shields are present, the winding patterns are designed so that the fields exterior to the biplanar coil are made as small as possible. The method is illustrated here by the design of some transverse gradient and shim coils.
Resumo:
The paper presents a method for designing circular, shielded biplanar coils that can generate any desired field. A particular feature of these coils is that the target field may be located asymmetrically within the coil. A transverse component of the magnetic field produced by the coil is made to match a prescribed target field over the surfaces of two concentric spheres (the diameter of spherical volume) that define the target field location. The paper shows winding patterns and fields for several gradient and shim coils. It examines the effect that the finite coil size has on the winding patterns, using a Fourier-transform calculation for comparison.
Resumo:
A numerical method is introduced to determine the nuclear magnetic resonance frequency of a donor (P-31) doped inside a silicon substrate under the influence of an applied electric field. This phosphorus donor has been suggested for operation as a qubit for the realization of a solid-state scalable quantum computer. The operation of the qubit is achieved by a combination of the rotation of the phosphorus nuclear spin through a globally applied magnetic field and the selection of the phosphorus nucleus through a locally applied electric field. To realize the selection function, it is required to know the relationship between the applied electric field and the change of the nuclear magnetic resonance frequency of phosphorus. In this study, based on the wave functions obtained by the effective-mass theory, we introduce an empirical correction factor to the wave functions at the donor nucleus. Using the corrected wave functions, we formulate a first-order perturbation theory for the perturbed system under the influence of an electric field. In order to calculate the potential distributions inside the silicon and the silicon dioxide layers due to the applied electric field, we use the multilayered Green's functions and solve an integral equation by the moment method. This enables us to consider more realistic, arbitrary shape, and three-dimensional qubit structures. With the calculation of the potential distributions, we have investigated the effects of the thicknesses of silicon and silicon dioxide layers, the relative position of the donor, and the applied electric field on the nuclear magnetic resonance frequency of the donor.
Resumo:
Let f : [0, 1] x R2 -> R be a function satisfying the Caxatheodory conditions and t(1 - t)e(t) epsilon L-1 (0, 1). Let a(i) epsilon R and xi(i) (0, 1) for i = 1,..., m - 2 where 0 < xi(1) < xi(2) < (...) < xi(m-2) < 1 - In this paper we study the existence of C[0, 1] solutions for the m-point boundary value problem [GRAPHICS] The proof of our main result is based on the Leray-Schauder continuation theorem.
Resumo:
We consider the semilinear Schrodinger equation -Delta(A)u + V(x)u = Q(x)vertical bar u vertical bar(2* -2) u. Assuming that V changes sign, we establish the existence of a solution u not equal 0 in the Sobolev space H-A,V(1) + (R-N). The solution is obtained by a min-max type argument based on a topological linking. We also establish certain regularity properties of solutions for a rather general class of equations involving the operator -Delta(A).