9 resultados para Cation hydrolysis

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solution of fac-[PtMe2(OMe)(H2O)(3)](+) (1) in aqueous perchloric acid underwent very slow hydrolysis of the Pt-OMe bond, over many, weeks. When chloride was added to a solution of 1, two interconverting isomers of [PtMe2(OMe)Cl(H2O)(2)] (with chloride trans to methyl) were formed, and with excess chloride, [PtMe2(OMe)Cl-2(H2O)](-) (both chloride ligands trans to methyl). This solution was stable at ambient temperature, but on heating, methanol was formed and [PtMe2Cl2(H2O)(2)] (both chloride ligands cis to methyl) was produced in the solution. It is proposed that this reaction proceeds via an intermediate complex with chloride bound trans to methoxide. Concentration gave solid [{PtMe2Cl2}n], whose identity was confirmed by conversion to [PtMe(2)Cl(2)py(2)] (pyridine, py, trans to methyl). With bromide and iodide, methoxide hydrolysis occurred at ambient temperature, more slowly with bromide than with iodide, to form solid [{PtMe2X2}(n)] without significant concentrations of [PtMe2X2(H2O)(2)] formed as an intermediate. The greater tendency for Pt-OMe bond to hydrolyse trans to halide compared with 1 was ascribed to the higher trans effect of the halide ligand compared with that of water. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emission from two photoactive 14-membered macrocyclic ligands, 6-((naphthalen-1-ylmethyl)-amino)trans-6,13-dimethyl- 13-amino- 1,4,8,11 -tetraaza-cyclotetradecane (L-1) and 6-((anthracen-9-ylmethyl)-amino)trans-6,13 -dimethyl - 13 -amino- 1,4,8, 1 1-tetraaza-cyclotetradecane (L-2) is strongly quenched by a photoinduced electron transfer (PET) mechanism involving amine lone pairs as electron donors. Time-correlated single photon counting (TCSPC), multiplex transient grating (TG), and fluorescence upconversion (FU) measurements were performed to characterize this quenching mechanism. Upon complexation with the redox inactive metal ion, Zn(II), the emission of the ligands is dramatically altered, with a significant increase in the fluorescence quantum yields due to coordination-induced deactivation of the macrocyclic amine lone pair electron donors. For [ZnL2](2+), the substituted exocyclic amine nitrogen, which is not coordinated to the metal ion, does not quench the fluorescence due to an inductive effect of the proximal divalent metal ion that raises the ionization potential. However, for [ZnL1](2+), the naphthalene chromophore is a sufficiently strong excited-state oxidant for PET quenching to occur.