55 resultados para Cartilage destruction

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) is a free radical which has complex roles in both health and disease. It is now recognized that NO is essential for a vast spectrum of intracellular and extracellular events in a wide variety of tissues. NO has also been implicated in the pathogenesis of numerous inflammatory and autoimmune diseases. In this review we consider the roles of NO generally and in particular the implications for periodontal diseases.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SOX9 is a transcription factor that plays a key role in chondrogenesis, Aggrecan is one of the major structural components in cartilage; however, the molecular mechanism of aggrecan gene regulation has not yet been fully elucidated, TC6 is a clonal chondrocytic cell line derived from articular cartilage, The purpose of this study was to examine whether SOX9 modulates aggrecan gene expression and to further identify molecules that regulate Sox9 expression in TC6 cells. SOX9 overexpression in TC6 cells enhanced by similar to 3-fold the transcriptional activity of the AgCAT-8 construct containing S-kilobase (kb) promoter/first exon/first intron fragments of the aggrecan gene. SOX9 enhancement of aggrecan promoter activity was lost when we deleted a 4.5-kb fragment from the 3'-end of the 8-kb fragment corresponding to the region including the first intron, In TC6 cells, SOX9 enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence >10-fold. SOX9 enhancement of aggrecan gene promoter activity and SOX9 transactivation through the Sry/Sox consensus sequence were not observed in osteoblastic osteosarcoma cells (ROS17/2.8), indicating the dependence on the cellular background. Northern blot analysis indicated that TC6 cells constitutively express Sox9 mRNA at relatively low levels. To examine regulation of Sox9 gene expression, we investigated the effects of calciotropic hormones and cytokines, Among these, retinoic acid (RA) specifically enhanced Sox9 mRNA expression in TC6 cells. The basal levels of Sox9 expression and its enhancement by RA were observed similarly at both permissive (33 degrees C) and nonpermissive (39 degrees C) temperatures. Furthermore, RA treatment enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence in TC6 cells. Moreover, RA treatment also enhanced the transcriptional activity of another reporter construct containing the enhancer region of the type II procollagen gene in TC6 cells. These observations indicate that SOX9 enhances aggrecan promoter activity and that its expression is up-regulated by RA in TC6 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embryonic development of tendons is in close association with that of cartilage and bone. Although these tissues are derived from mesenchymal progenitor cells which also give rise to muscle and fat, their fates clearly diverse in early embryonic stages, Transcription factors may play pivotal roles in the process of determination and differentiation of tendon cells as well as other cells in the skeletal system. Scleraxis, a basic helix-loop-helix (bHLH) type transcription factor. is expressed in mesenchymal progenitors that later form connective tissues including tendons. Sox9 is an HMG-box containing transcription factor, which is expressed at high levels in chondrocytes. We hypothesized that the two transcription factors regulate the fate of cells that interact with each other at the interface between the two tissues during divergence of their differentiation pathways, To address this point, we investigated scleraxis and Sox9 rnRNA expression during mouse embyogenesis focusing on the coordinated development of tendons and skeletons, In the early stage of mesenchymal tissue development at 10.5 d.p.c., scleraxis and Sox9 transcripts were expressed in the mesenchymal progenitor cells in the appendicular and axial mesenchyme. At 11.5 d.p.c.. scleraxis transcripts were observed in the mesenchymal tissue surrounding skeletal primordia which express Sox9. From this stage, scleraxis expression was closely associated with, but distinct from, formation of skeletal primordia, At 13.5 d.p.c., scleraxis was expressed broadly in the interface between muscle and skeletal primordia while Sox9 expression is confined within the early skeletal primordia. Then. at 15.5 d.p.c., scleraxis transcripts were more restricted to tendons. These observations revealed the presence of temporal and spatial association of scleraxis expression during embryonic development of tendon precursor cells in close association with that of So,0 expression in chondrogenic cells in skeletal tissues. (C) 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-related changes in the composition of the cartilage matrix may be associated with the development of osteoarthritis, a relatively late-onset disease characterised by the destruction of joint cartilage. In order to investigate whether differences in the VNTR polymorphic region of aggrecan affect cartilage functionality and therefore the development of osteoarthritis, we examined the aggrecan polymorphic genotypes of a sample of 134 Australian twins aged over 50 (including 34 monozygotic and 27 dizygotic twin pairs). Clinical measures of hand, hip and knee osteoarthritis, as well as self-reported bone and joint pain, were tested for association with the aggrecan polymorphism. The results were consistent with either a deleterious effect of allele 27, or a protective effect of alleles 25 and 28, providing some additional evidence for an association between the aggrecan VNTR polymorphism and osteoarthritis of the hands, hips and knees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth hormone (GH) stimulates mandibular growth but its effect on the mandibular condylar cartilage is not well. understood. Objective: This study was designed to understand the influence of GH on mitotic activity and on chondrocytes maturation. The effect of GH on cartilage thickness was also determined. Design: An animal model witt differences in GH status was determined by comparing mutant Lewis dwarf rats with reduced pituitary GH synthesis (dwarf), with normal rats and dwarf animals treated with GH. Six dwarf rats were injected with GH for 6 days, while other six normal rats and six dwarf rats composed other two groups. Mandibular condylar tissues were processed and stained for Herovici's stain and immunohistochemistry, for proliferating cell nuclear antigen (PCNA) and alkaline phosphatase (ALP). Measurements of cartilage thickness as well as the numbers of immunopositive cells for each antibody were analysed by one-way analysis of variance. Results: Cartilage thickness was significantly reduced in the dwarf animals treated with GH. PCNA expression was significant lower in the dwarf rats, but significantly increased when these animals were treated with GH. ALP expression was significant higher in the dwarf animals, while it was significantly reduced in the dwarf animals treated with GH. Conclusions: The results from this study showed that GH stimulates mitotic activity and delays cartilage cells maturation in the mandibular condyte. This effect at the cellular Level may produce changes in the cartilage thickness. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NF-kappaB activation is associatied with the inflammation of bone destruction and certain cancers. The NEMO (NF-kB essential modulator)-binding domain (NBD) protein inhibits the activation of NF-kappaB. Cellular studies have shown that the NBD protein inhibits osteoclastogenesis. Mimicking infection with a lipopolysaccharide injection in mice resulted in activated osteoclasts and reduced bone mineral density. These responses are inhibited with the NBD peptide. In a mouse model of rheumatoid arthritis, collagen-induced arthritis, treatment with the NBD protein delayed the onset, lowered the incidence and decreased the severity of the arthritis. NF-kappaB is a target in the inflammation associated with bone destruction. A key issue is whether or not this important transcription factor can be inhibited without causing excessive adverse effects and/or toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular fragments of cartilage are antigenic and can stimulate an autoimmune response. Oral administration of type II collagen prevents disease onset in animal models of arthritis but the effects of other matrix components have not been reported. We evaluated glycosaminoglycan polypeptides (GAG-P) and matrix proteins (CaP) from cartilage for a) mitigating disease activity in rats with collagen-induced arthritis (CIA) and adjuvant-induced arthritis (AIA) and b) stimulating proteoglycan (PG) synthesis by chondrocytes in-vitro. CIA and AIA were established in Wistar rats using standard methods. Agents were administered orally (10–200 mg/kg), either for seven days prior to disease induction (toleragenic protocol), or continuously for 15 days after injecting the arthritigen (prophylactic protocol). Joint swelling and arthritis scores were determined on day 15. Histological sections of joint tissues were assessed post-necropsy. In chondrocyte cultures, CaP + / − interleukin-1 stimulated PG biosynthesis. CaP was also active in preventing arthritis onset at 3.3, 10 or 20 mg/kg in the rat CIA model using the toleragenic protocol. It was only active at 20 and 200 mg/kg in the CIA prophylactic protocol. GAG-P was active in the CIA toleragenic protocol at 20 mg/kg but chondroitin sulfate and glucosamine hydrochloride or glucosamine sulfate were all inactive. The efficacy of CaP in the rat AIA model was less than in the CIA model. These findings lead us to suggest that oral CaP could be used as a disease-modifying anti-arthritic drug.