103 resultados para CRITICAL ORGANS
em University of Queensland eSpace - Australia
Resumo:
Dendritic cells (DC) are considered to be the major cell type responsible for induction of primary immune responses. While they have been shown to play a critical role in eliciting allosensitization via the direct pathway, there is evidence that maturational and/or activational heterogeneity between DC in different donor organs may be crucial to allograft outcome. Despite such an important perceived role for DC, no accurate estimates of their number in commonly transplanted organs have been reported. Therefore, leukocytes and DC were visualized and enumerated in cryostat sections of normal mouse (C57BL/10, B10.BR, C3H) liver, heart, kidney and pancreas by immunohistochemistry (CD45 and MHC class II staining, respectively). Total immunopositive cell number and MHC class II+ cell density (C57BL/10 mice only) were estimated using established morphometric techniques - the fractionator and disector principles, respectively. Liver contained considerably more leukocytes (similar to 5-20 x 10(6)) and DC (similar to 1-3 x 10(6)) than the other organs examined (pancreas: similar to 0.6 x 10(6) and similar to 0.35 x 10(6): heart: similar to 0.8 x 10(6) and similar to 0.4 x 10(6); kidney similar to 1.2 x 10(6) and 0.65 x 10(6), respectively). In liver, DC comprised a lower proportion of all leukocytes (similar to 15-25%) than in the other parenchymal organs examined (similar to 40-60%). Comparatively, DC density in C57BL/10 mice was heart > kidney > pancreas much greater than liver (similar to 6.6 x 10(6), 5 x 10(6), 4.5 x 10(6) and 1.1 x 10(6) cells/cm(3), respectively). When compared to previously published data on allograft survival, the results indicate that the absolute number of MHC class II+ DC present in a donor organ is a poor predictor of graft outcome. Survival of solid organ allografts is more closely related to the density of the donor DC network within the graft. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
With the ever-growing evidence base it is more difficult to keep abreast of relevant issues in health care. Studies are also becoming more complex in order to address specific research and clinical questions. Appropriate interpretation of these studies is paramount to a progressive practice in health care. This article presents an intellectual framework for the critical appraisal of an original research article. (author abstract)
Resumo:
We investigated whether red cell 2,3-diphosphoglycerate (2,3-DPG) concentrations are reduced in critical illness, whether acidaemia, hypophosphataemia or anaemia influence 2,3-DPG, and whether there is any net effect on in vivo P50. Twenty healthy, non-smoking, male volunteers were compared with 20 male intensive care patients with APACHE 2 scores > 20 on the preceding day. Those transfused in this time were excluded. Venous red cell 2,3-DPG concentrations were measured in both groups. In the patient group, routine multichannel biochemical profile and arterial blood gas analysis were also performed and in vivo P50 calculated. The mean 2,3-DPG concentration was significantly lower in the patient group than in the controls (4.2 +/-1.3 mmoll/l vs 4.9 +/-0.5 mmol/l, P=0.016). The patients were well oxygenated (lowest arterial PO2=75 mm Hg) and showed a tendency to acidaemia (median pH 7.37, range 7.06 to 7.48) and anaemia (median haemoglobin concentration 113 g/l, range 89 to 154 g/l). By linear regression of patient data, pH had a significant effect on 2,3-DPG concentrations (r=0.6, P=0.011). Haemoglobin and phosphate concentrations did not, but there were few abnormal phosphate values. There was no correlation between 2,3-DPG concentrations and in vivo P50 (r(2) less than or equal to 0.08). We conclude that 2,3-DPG concentrations were reduced in a broad group of critically ill patients. Although this would normally reduce the P50, the reduction was primarily linked with acidaemia, which increases the P50. Overall, there was no net effect on the P50 and thus no affinity-related decrease in tissue oxygenation.
Resumo:
All debates in history—who started the Cold War, how successful were the Chartists in achieving their aims, to what extent was the recession of the American frontier culturally significant in American history— are debates between competing narrative interpretations. Moreover, because the historical imagination itself exists intertextually within our own social and political environment, the past is never discovered set aside from everyday life. History is designed and composed in the here and now.
Resumo:
We present an analysis of previously published measurements of the London penetration depth of layered organic superconductors. The predictions of the BCS theory of superconductivity are shown to disagree with the measured zero temperature, in plane, London penetration depth by up to two orders of magnitude. We find that fluctuations in the phase of the superconducting order parameter do not determine the superconducting critical temperature as the critical temperature predicted for a Kosterlitz–Thouless transition is more than an order of magnitude greater than is found experimentally for some materials. This places constraints on theories of superconductivity in these materials.
Resumo:
We investigate the effect of the coefficient of the critical nonlinearity for the Neumann problem on the existence of least energy solutions. As a by-product we establish a Sobolev inequality with interior norm.
Resumo:
We consider the semilinear Schrodinger equation -Deltau+V(x)u= K(x) \u \ (2*-2 u) + g(x; u), u is an element of W-1,W-2 (R-N), where N greater than or equal to4, V, K, g are periodic in x(j) for 1 less than or equal toj less than or equal toN, K>0, g is of subcritical growth and 0 is in a gap of the spectrum of -Delta +V. We show that under suitable hypotheses this equation has a solution u not equal 0. In particular, such a solution exists if K equivalent to 1 and g equivalent to 0.
Resumo:
We investigate the solvability of the Neumann problem (1.1) involving a critical Sobolev exponent. In the first part of this work it is assumed that the coeffcients Q and h are at least continuous. Moreover Q is positive on overline Omega and lambda > 0 is a parameter. We examine the common effect of the mean curvature and the shape of the graphs of the coeffcients Q and h on the existence of low energy solutions. In the second part of this work we consider the same problem with Q replaced by - Q. In this case the problem can be supercritical and the existence results depend on integrability conditions on Q and h.
Resumo:
It is argued that the common classification of abrasive wear into 'two-body abrasion' and 'three-body abrasion' is seriously flawed. No definitions have been agreed upon for these terms, and indeed there are two quite different interpretations, the implications of which are mutually inconsistent. In the dominant interpretation, the primary thrust of the two-body/three-body concept is to describe whether the abrasive particles are constrained (two-body) or free to roll (three-body). In this view, two-body abrasion is generally much more severe than three-body. The alternative interpretation emphasises the presence (three-body) or absence (two-body) of a rigid counterface backing the abrasive. In this view, three-body abrasion is equated to high-stress (or grinding) abrasion and is generally more severe than two-body (low-stress) abrasion. This paper recommends that the 'two-body/three-body' terminology be abandoned, to be replaced by an alternative classification scheme based directly upon the manifest severity of wear. (C) 1998 Elsevier Science S.A.
Resumo:
The linear relationship between work accomplished (W-lim) and time to exhaustion (t(lim)) can be described by the equation: W-lim = a + CP.t(lim). Critical power (CP) is the slope of this line and is thought to represent a maximum rate of ATP synthesis without exhaustion, presumably an inherent characteristic of the aerobic energy system. The present investigation determined whether the choice of predictive tests would elicit significant differences in the estimated CP. Ten female physical education students completed, in random order and on consecutive days, five art-out predictive tests at preselected constant-power outputs. Predictive tests were performed on an electrically-braked cycle ergometer and power loadings were individually chosen so as to induce fatigue within approximately 1-10 mins. CP was derived by fitting the linear W-lim-t(lim) regression and calculated three ways: 1) using the first, third and fifth W-lim-t(lim) coordinates (I-135), 2) using coordinates from the three highest power outputs (I-123; mean t(lim) = 68-193 s) and 3) using coordinates from the lowest power outputs (I-345; mean t(lim) = 193-485 s). Repeated measures ANOVA revealed that CPI123 (201.0 +/- 37.9W) > CPI135 (176.1 +/- 27.6W) > CPI345 (164.0 +/- 22.8W) (P < 0.05). When the three sets of data were used to fit the hyperbolic Power-t(lim) regression, statistically significant differences between each CP were also found (P < 0.05). The shorter the predictive trials, the greater the slope of the W-lim-t(lim) regression; possibly because of the greater influence of 'aerobic inertia' on these trials. This may explain why CP has failed to represent a maximal, sustainable work rate. The present findings suggest that if CP is to represent the highest power output that an individual can maintain for a very long time without fatigue then CP should be calculated over a range of predictive tests in which the influence of aerobic inertia is minimised.
Resumo:
In this paper I give details of new constructions for critical sets in latin squares. These latin squares, of order n, are such that they can be partitioned into four subsquares each of which is based on the addition table of the integers module n/2, an isotopism of this or a conjugate.