5 resultados para COX-1
em University of Queensland eSpace - Australia
Resumo:
The species of Clematis (Ranunculaceae) have been traditionally used for inflammatory conditions by indigenous Australians. We have previously reported that the ethanol extract of Clematis pickeringii inhibited COX-1. In this study, we examined the ethanol extracts and fractions of three Clematis species, Clematis pickeringii, Clematis glycinoides and Clematis microphylla, on cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX). We further examined the activating effects on the protein expression of peroxisome proliferator-activated receptor alpha (PPAR alpha) and gamma (PPAR-gamma) in HepG2 cells. The ethanol extracts of three Clematis species inhibited the activities of COX-1, COX-2 and 5-LOX in the different extents. The stem extract of Clematis pickeringii showed the highest inhibitory activities among the three species on COX-1, COX-2 and 5-LOX with the IC50 values of 73.5, 101.2 and 29.3 mu g/mL. One of its fractions also significantly elevated PPAR gamma expression by 173, 280 and 435% and PPAR gamma expression by 140, 228 and 296% at 4, 8 and 16 mu g/mL, respectively. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
It is well established that prostaglandins are essential mediators of bone resorption and formation. In the early 1990s, it was discovered that enzymatic reactions producing prostaglandins were regulated by two cyclooxygenase enzymes, one producing prostaglandins constitutively in tissues like the stomach, prostaglandin endoperoxide H synthase-1 (PGHS-1 or COX-1), and another induced by mitogens or inflammatory mediators (PGHS-2 or COX-2). This neat distinction has not been maintained because both enzymes act in different cell systems to provide physiological signaling, constitutively or by induction under certain conditions. For example, the regulation patterns of PGHS-1 and PGHS-2 are distinct, but the evidence shows that PGHS-2 functions constitutively in the skeleton. PGHS-2 hits quickly been established, therefore, as a key regulator of bone biology, capable of rapid and transient expression in bone cells, and mediating osteoclastogenesis, mechanotransduction, bone formation and fracture repair. The goal of this review is to Summarize the current state of our knowledge of PGHS regulation of bone metabolism and to identify some of the key unresolved challenges and questions that require further study. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We report the clinical characteristics of a schizophrenia sample of 409 pedigrees-263 of European ancestry ( EA) and 146 of African American ancestry ( AA)-together with the results of a genome scan ( with a simple tandem repeat polymorphism interval of 9 cM) and follow-up fine mapping. A family was required to have a proband with schizophrenia ( SZ) and one or more siblings of the proband with SZ or schizoaffective disorder. Linkage analyses included 403 independent full-sibling affected sibling pairs ( ASPs) ( 279 EA and 124 AA) and 100 all-possible half-sibling ASPs ( 15 EA and 85 AA). Nonparametric multipoint linkage analysis of all families detected two regions with suggestive evidence of linkage at 8p23.3-q12 and 11p11.2-q22.3 ( empirical Z likelihood-ratio score [ Z(lr)] threshold >= 2.65) and, in exploratory analyses, two other regions at 4p16.1-p15.32 in AA families and at 5p14.3-q11.2 in EA families. The most significant linkage peak was in chromosome 8p; its signal was mainly driven by the EA families. Z(lr) scores >= 2.0 in 8p were observed from 30.7 cM to 61.7 cM ( Center for Inherited Disease Research map locations). The maximum evidence in the full sample was a multipoint Z(lr) of 3.25 ( equivalent Kong-Cox LOD of 2.30) near D8S1771 ( at 52 cM); there appeared to be two peaks, both telomeric to neuregulin 1 ( NRG1). There is a paracentric inversion common in EA individuals within this region, the effect of which on the linkage evidence remains unknown in this and in other previously analyzed samples. Fine mapping of 8p did not significantly alter the significance or length of the peak. We also performed fine mapping of 4p16.3-p15.2, 5p15.2-q13.3, 10p15.3-p14, 10q25.3-q26.3, and 11p13-q23.3. The highest increase in Z(lr) scores was observed for 5p14.1-q12.1, where the maximum Z(lr) increased from 2.77 initially to 3.80 after fine mapping in the EA families.
Resumo:
Selenium binding protein I (SELENBP1) was identified to be the most significantly down-regulated protein in ovarian cancer cells by a membrane proteome profiling analysis. SELENBP1 expression levels in 4 normal ovaries, 8 benign ovarian tumors, 12 borderline ovarian tumors and 141 invasive ovarian cancers were analyzed with immunohistochemical assay. SELENBP1 expression was reduced in 87% cases of invasive ovarian cancer (122/141) and was significantly reduced in borderline tumors and invasive cancers (p < 0.001). Cox multivariate analysis within the 141 invasive cancer tissues showed that SELENBP1 expression score was a potential prognostic indicator for unfavorable prognosis of ovarian cancer (hazard ratio [HR], 2.18; 95% CI = L22-190; p = 0.009). Selenium can disrupt the androgen pathway, which has been implicated in modulating SELENBP1 expression. We investigated the effects of selenium and androgen on normal human ovarian surrace epithelial (HOSE) cells and cancer cells. Interestingly, SELENBP1 mRNA and protein levels were reduced by androgen and elevated by selenium treatment in the normal HOSE cells, whereas reversed responses were observed in the ovarian cancer cell lines. These results suggest that changes of SELENBP1 expression in malignant ovarian cancer are an indicator of aberration of selenium/androgen pathways and may reveal prognostic information of ovarian cancer. (c) 2005 Wiley-Liss, Inc.