34 resultados para C-3 PLANTS
em University of Queensland eSpace - Australia
Resumo:
The reactions of sodium benzoate with a series of trimesylates derived from glucosamine have been examined in an attempt to gain facile access to galactosamine analogues. Trimesylate 17, in which the amino group was protected as a phthalimide, underwent double displacement at positions 4 and 6 to give the dibenzoate 18 with the desired galactosamine configuration. In contrast, trimesylates 21 and 27, in which the amino groups were protected as acetamides, unexpectedly underwent double displacement at positions 3 and 6, giving products 22 and 28, respectively, with allosamine configurations.
Allosamines and galactosamines from glucosamine: Control of stereochemical inversions at C-3 and C-4
Resumo:
Stable carbon and nitrogen isotope signatures (delta C-13 and delta N-15) of Cannabis sativa were assessed for their usefulness to trace seized Cannabis leaves to the country of origin and to source crops by determining how isotope signatures relate to plant growth conditions. The isotopic composition of Cannabis examined here covered nearly the entire range of values reported for terrestrial C-3 plants. The delta C-13 values of Cannabis from Australia, Papua New Guinea and Thailand ranged from -36 to -25 parts per thousand, and delta N-15 values ranged from -1.0 to 15.8 parts per thousand. The stable isotope content did not allow differentiation between Cannabis originating from the three countries, but delta C-13 values of plantation-grown Cannabis differed between well-watered plants (average delta C-13 of -30.0 parts per thousand) and plants that had received little irrigation (average delta C-13 of -26.4 parts per thousand). Cannabis grown under controlled conditions had delta C-13 values of -32.6 and -30.6 parts per thousand with high and low water supply, respectively. These results indicate that water availability determines leaf C-13 in plants grown under similar conditions of light, temperature and air humidity. The delta C-13 values also distinguished between indoor- and outdoor-grown Cannabis; indoor- grown plants had overall more negative delta C-13 values (average -31.8 parts per thousand) than outdoor-grown plants (average -27.9 parts per thousand). Contributing to the strong C-13-depletion of indoor- grown plants may be high relative humidity, poor ventilation and recycling of C-13-depleted respired CO2. Mineral fertilizers had mostly lower delta N-15 values (-0.2 to 2.2 parts per thousand) than manure-based fertilizers (7.6 to 22.7 parts per thousand). It was possible to link delta N-15 values of fertilizers associated with a crop site to soil and plant delta N-15 values. The strong relationship between soil, fertilizer, and plant delta N-15 suggests that Cannabis delta N-15 is determined by the isotopic composition of the nitrogen source. The distinct delta N-15 values measured in Cannabis crops make delta N-15 an excellent tool for matching seized Cannabis with a source crop. A case study is presented that demonstrates how delta C-13 and delta N-15 values can be used as a forensic tool.
Resumo:
Stable carbon isotope analyses of wool staples provided insight into the vegetation consumed by sheep at a temporal resolution not previously studied. Contemporary Australian and historic South African samples dating back to 1916 were analyzed for their stable carbon isotope ratio, a proxy for the proportion of C-3 and C-4 plant species consumed by animals. Sheep sample vegetation continuously throughout a year, and as their wool grows it integrates and stores information about their diet. In subtropical and tropical rangelands the majority of grass species are C-4. Since sheep prefer to graze, and their wool is an isotopic record of their diet, we now have the potential to develop a high resolution index to the availability of grass from a sheep's perspective. Isotopic analyses of wool suggest a new direction for monitoring grazing and for the reconstruction of past vegetation changes, which will make a significant contribution to traditional rangeland ecology and management. It is recommended that isotopic and other analyses of wool be further developed for use in rangeland monitoring programs to provide valuable feedback for land managers.
Resumo:
Confocal scanning laser microscopic observations were made on live chloroplasts in intact cells and on mechanically isolated, intact chloroplasts. Chlorophyll fluorescence was imaged to observe thylakoid membrane architecture. C-3 plant species studied included Spinacia oleracea L., Spathiphyllum sp. Schott, cv. 'Mauna Loa', and Pisum sativum L. C-4 plants were also investigated: Saccharum officinarum L., Sorghum bicolor L. Moench, Zea mays L. and Panicum miliaceum L. Some Spinacia chloroplasts were treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) to enhance or sodium dithionite (SD) to reduce the photosystem II fluorescence signal. Confocal microscopy images of C-3 chloroplasts differed from electron microscopy pictures because they showed discrete spots of bright fluorescence with black regions between them. There was no evidence of fluorescence from stroma thylakoids. The thylakoid membrane system at times appeared to be string-like, with brightly fluorescing grana lined up like beads. C-4 bundle sheath chloroplasts were imaged from three different types of C-4 plants. Saccharum and Sorghum bundle sheath chloroplasts showed homogeneous fluorescence and were much dimmer than mesophyll chloroplasts. Zea had rudimentary grana, and dim, homogeneous intergrana fluorescence was visualised. Panicum contained thylakoids similar in appearance and string-like arrangement to mesophyll chloroplasts. Isolated Pisum chloroplasts, treated with a drop of 5 mM MgCl2 showed a thylakoid membrane system which appeared to be unravelling. Spongy mesophyll chloroplasts of Spinacia treated with 5 mM sodium dithionite showed a granal thylakoid system with distinct regions of no fluorescence. A time-series experiment provided evidence of dynamic membrane rearrangements over a period of half an hour.
Resumo:
A southern Australian Phorbas sp. has yielded the novel diterpenes phorbasin B (2) and phorbasin C (3). Phorbasins B and C possess a hitherto unknown carbon skeleton, and their structures were assigned on the basis of detailed spectroscopic analyses.
Resumo:
Aluminium (At) tolerance in plants may be conferred by reduced binding of Al in the cell wall through low root cation exchange capacity (CEC) or by organic acid exudation. Root CEC is related to the degree of esterification (DE) of pectin in the cell wall, and pectin hydrolysis plays a role in cell expansion. Therefore, it was hypothesised that Al-tolerant plants with a low root CEC maintain pectin hydrolysis in the presence of Al, allowing cell expansion to continue. Irrespective of the DE, binding of Al to pectin reduced the enzymatic hydrolysis of Al-pectin gels by polygalacturonase (E.C. 3.2.1.15). Pectin gels with calcium (Ca) were slightly hydrolysed by polygalacturonase. It was concluded, therefore, that Al tolerance conferred by low root CEC is not mediated by the ability to maintain pectin hydrolysis. Citrate and malate, but not acetate, effectively dissolved Al-pectate gel and led to hydrolysis of the dissolved pectin by polygalacturonase. The organic acids did not dissolve Ca-pectate, nor did they increase pectin hydrolysis by polygalacturonase. It was concluded that exudation of some organic acids can remove Al bound to pectin and this could alleviate toxicity, constituting a tolerance mechanism. (C) 2003 Editions scientitiques et medicales Elsevier SAS. All rights reserved.
Resumo:
Bedded carbonate rocks from the 3.45 Ga Warrawoona Group, Pilbara Craton, contain structures that have been regarded either as the oldest known stromatolites or as abiotic hydrothermal deposits. We present new field and petrological observations and high-precision REE + Y data from the carbonates in order to test the origin of the deposits. Trace element geochemistry from a number of laminated stromatolitic dolomite samples of the c. 3.40 Ga Strelley Pool Chert conclusively shows that they precipitated from anoxic seawater, probably in a very shallow environment consistent with previous sedimentological observations. Edge-wise conglomerates in troughs between stromatolites and widespread cross-stratification provide additional evidence of stromatolite construction, at least partly, from layers of particulate sediment, rather than solely from rigid crusts. Accumulation of particulate sediment on steep stromatolite sides in a high-energy environment suggests organic binding of the surface. Relative and absolute REE + Y contents are exactly comparable with Late Archaean microbial carbonates of widely agreed biological origin. Ankerite from a unit of bedded ankerite–chert couplets from near the top of the stratigraphically older (3.49 Ga) Dresser Formation, which immediately underlies wrinkly stromatolites with small, broad, low-amplitude domes, also precipitated from anoxic seawater. The REE + Y data of carbonates from the Strelley Pool Chert and Dresser Formation contrast strongly with those from siderite layers in a jasper–siderite–Fe-chlorite banded iron-formation from the base of the Panorama Formation (3.45 Ga), which is clearly hydrothermal in origin. The geochemical results, together with sedimentological data, strongly support: (1) deposition of Dresser Formation and Strelley Pool Chert carbonates from Archaean seawater, in part as particulate carbonate sediment; (2) biogenicity of the stromatolitic carbonates; (3) a reducing Archaean atmosphere; (4) ongoing extensive terrestrial erosion prior to ∼3.45 Ga.
Resumo:
Plants accumulate isotopes of carbon at different rates because of discrimination against C-13 relative to C-12. In plants that fix carbon by the C-3 pathway, the amount of discrimination correlates negatively with transpiration efficiency (TE) where TE is the amount of dry matter accumulated per unit water transpired. Therefore, carbon isotope discrimination (Delta) has become a useful tool for selecting genotypes with improved TE and performance in dry environments. Surveys of 161 sunflower (Helianthus spp.) genotypes of diverse origin revealed a large and unprecedented range of genetic variation for Delta (19.5-23.8parts per thousand). A strong negative genetic correlation (r(g)) between TE and Delta (r(g) = -0.87, P < 0.001) was observed in glasshouse studies. Gas exchange measurements of field grown plants indicated that Delta was strongly correlated with stomatal conductance to water vapor (g), (r(g) 0.64, P < 0.01), and the ratio of net assimilation rate (A) to g, (r(g) = 0.86, P < 0.001), an instantaneous measure of TE. Genotype CMSHA89MAX1 had the lowest TE (and highest Delta) of all genotypes tested in these studies and low yields in hybrid combination. Backcrossing studies showed that the TE of this genotype was due to an adverse effect of the MAX1 cytoplasm, which was inherited from the diploid perennial H. maximiliani Schrader. Overall, these studies suggested that there is an excellent opportunity for breeders to develop sunflower germplasm with improved TE. This can be achieved, in part, by avoiding cytoplasms such as the MAX1 cytoplasm.
Resumo:
Three new aromatic butenolides, gymnoascolides A-C (1-3), have been isolated from the Australian soil ascomycete Gymnoascus reessii and assigned structures on the basis of detailed spectroscopic analysis. The absolute configurations of gymnoascolides B (2) and C (3) at C-5 were solved using a combination of chemical derivatization and quantum chemical simulations.
Resumo:
Figs are rainforest keystone species. Non-strangler figs establish on the forest floor; strangler figs establish epiphytically, followed by a dramatic transition from epiphyte to free-standing tree that kills its hosts. Free-standing figs display vigorous growth and resource demand suggesting that epiphytic strangler figs require special adaptations to deal with resource limitations imposed by the epiphytic environment. We studied epiphytic and free-standing strangler figs, and non-strangler figs in tropical rainforest and in cultivation, as well as strangler figs in controlled conditions. We investigated whether the transition from epiphyte to free-standing tree is characterised by morphological and physiological plasticity. Epiphyte substrate had higher levels of plant-available ammonium and phosphate, and similar levels of nitrate compared with rainforest soil, suggesting that N and P are initially not limiting resources. A relationship was found between taxonomic groups and plant N physiology; strangler figs, all members of subgenus Urostigma, had mostly low foliar nitrate assimilation rates whereas non-strangler figs, in subgenera Pharmacocycea, Sycidium, Sycomorus or Synoecia, had moderate to high rates. Nitrate is an energetically expensive N source, and low nitrate use may be an adaptation of strangler figs for conserving energy during epiphytic growth. Interestingly, significant amounts of nitrate were stored in fleshy taproot tubers of epiphytic stranglers. Supporting the concept of plasticity, leaves of epiphytic Ficus benjamina L. had lower N and C content per unit leaf area, lower stomatal density and 80% greater specific leaf area than leaves of conspecific free-standing trees. Similarly, glasshouse-grown stranglers strongly increased biomass allocation to roots under water limitation. Epiphytic and free-standing F. benjamina had similar average foliar delta C-13, but epiphytes had more extreme values; this indicates that both groups of plants use the C-3 pathway of CO2 fixation but that water availability is highly variable for epiphytes. We hypothesise that epiphytic figs use fleshy stem tubers to avoid water stress, and that nitrate acts as an osmotic compound in tubers. We conclude that strangler figs are a unique experimental system for studying the transition from rainforest epiphyte to tree, and the genetic and environmental triggers involved.
Resumo:
2D-NMR spectroscopic data is reported for the haliclonacyclamines A - D (1)-(4) and for two bismethiodide adducts (5) and (6). The structures of two new alkaloids, haliclonacyclamines C (3) and D (4), which are the 15,16-dihydro analogues of the haliclonacyclamines A (1) and B (2) are described. Revised assignments deduced by 2D-INADEQUATE spectroscopy are presented for (1) and (2). The alkene substituent in the C,, spacer group of (2) and (4) is positioned between C27-C28 by NMR, and confirmed by x-ray structural analysis for (2). Metabolite (3) has a C25-C26 double bond. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Five distinct pathways for the reaction of isoxazol-5(2H)-ones with bases or nucleophiles have been reported, and are detailed herein. That investigated in greatest detail, and of greatest application in heterocyclic synthesis, is that of isoxazolones unsubstituted at C-3, in which the sequentially formed ketenimine, alpha-lactone and ketene may all react with a nucleophile.
Resumo:
Pepper (Capsicum annuum L.) plants were grown aeroponically in a Singapore greenhouse under natural diurnally fluctuating ambient shoot temperatures, but at two different root-zone temperatures (RZTs): a constant 20 +/- 2 degrees C RZT and a diurnally fluctuating ambient (A) (25-40 degrees C) RZT, Plants grown at 20-RZT had more leaves, greater leaf area and dry weight than A-RZT plants. Reciprocal transfer experiments were conducted between RZTs to investigate the effect on plant growth, stomatal conductance (g(s)) and water relations. Transfer of plants from A-RZT to 20-RZT increased plant dry weight, leaf area, number of leaves, shoot water potential (Psi(shoot)), and g(s); while transfer of plants from 20-RZT to A-RZT decreased these parameters. Root hydraulic conductivity was measured in the latter transfer and decreased by 80% after 23 d at A-RZT. Transfer of plants from 20-RZT to A-RZT had no effect on xylem ABA concentration or xylem nitrate concentration, but reduced xylem sap pH by 0.2 units. At both RZTs, g(s) measured in the youngest fully expanded leaves increased with plant development. In plants with the same number of leaves, A-RZT plants had a higher g(s) than 20-RZT plants, but only under high atmospheric vapour pressure deficit. The roles of chemical signals and hydraulic factors in controlling g(s) of aeroponically grown Capsicum plants at different RZTs are discussed.