4 resultados para Braking in a Turn.

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article examines the seventeenth-century debate between the Dutch philosopher Benedict de Spinoza and the British scientist Robert Boyle, with a view to explicating what the twentieth-century French philosopher Gilles Deleuze considers to be the difference between science and philosophy. The two main themes that are usually drawn from the correspondence of Boyle and Spinoza, and used to polarize the exchange, are the different views on scientific methodology and on the nature of matter that are attributed to each correspondent. Commentators have tended to focus on one or the other of these themes in order to champion either Boyle or Spinoza in their assessment of the exchange. This paper draws upon the resources made available by Gilles Deleuze and Felix Guattari in their major work What is Philosophy?, in order to offer a more balanced account of the exchange, which in its turn contributes to our understanding of Deleuze and Guattari's conception of the difference between science and philosophy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Short peptides corresponding to two to four a-helical turns of proteins are not thermodynamically stable helices in water. Unstructured octapeptide Ac-His1*-Ala2-Ala3-His4*-His5*-Glu6-Leu7-His8*-NH2 (1) reacts with two [Pd ((NH2)-N-15(CH2)(2) (NH2)-N-15)(NO3)(2)] in water to form a kinetically stable intermediate, [{Pden}(2)-{(1,4)(5,8)-peptide}](2), in which two 19-membered metallocyclic rings stabilize two peptide turns. Slow subsequent folding to a thermodynamically more stable two-turn a-helix drives the equilibrium to [{Pden}(2)-{(1,5)(4,8)-peptide}] (3), featuring two 22-membered rings. This transformation from unstructured peptide via turns to an a-helix suggests that metal clips might be useful probes for investigating peptide folding.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cyclic pentapepticles are not known to exist in a-helical conformations. CD and NMR spectra show that specific 20-membered cyclic pentapepticles, Ac-(cyclo-1,5) [KxxxD]-NH2 and Ac-(cyclo-2,6)R[KxxxD]-NH2, are highly a-helical structures in water and independent of concentration, TFE, denaturants, and proteases. These are the smallest a-helical peptides in water.