14 resultados para Brain damage
em University of Queensland eSpace - Australia
Resumo:
Chronic alcoholism leads to localized brain damage, which is prominent in superior frontal cortex but mild in motor cortex. The likelihood of developing alcohol dependence is associated with genetic markers. GABA(A) receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the localized expression of glutamate and gamma-aminobutyric acid (GABA) receptors to influence the severity of alcohol-induced brain damage. Cerebrocortical tissue was obtained at autopsy from alcoholics without alcohol-related disease, alcoholics with cirrhosis, and matched controls. DRD2A, DRD2B, GABB2, EAAT2, and 5HTT genotypes did not divide alcoholic cases and controls on N-methyl-D-aspartate (NMDA) receptor parameters. In contrast, alcohol dehydrogenase (ADH)3 genotype interacted significantly with NMDA receptor efficacy and affinity in a region-specific manner. EAAT2 genotype interacted significantly with local GABAA receptor subunit mRNA expression, and GABB2 and DRD2B genotypes with p subunit isoform protein expression. Genotype may modulate amino acid transmission locally so as to mediate neuronal vulnerability. This has implications for the effectiveness of pharmacological interventions aimed at ameliorating brain damage and, possibly, dependence. (C) 2004 Elsevier Ltd. All rights reserved
GABA(A) receptor beta isoform protein expression in human alcoholic brain: interaction with genotype
Resumo:
Long-term alcohol abuse by human subjects leads to selective brain damage that is restricted in extent and variable in severity. Within the cerebral cortex, neuronal loss is most marked in the superior frontal cortex and relatively mild in motor cortex. Cirrhotic alcoholics and subjects with alcohol-related Wernicke-Korsakoff syndrome show more severe and more extensive damage than do uncomplicated cases. Accumulating evidence suggests that the likelihood of developing alcohol dependency is associated with one or more genetic markers. In previous work we showed that GABAA receptor functionality, and the subunit isoform expression that underlies this, differed in region- and disease-specific ways between alcoholics and controls. By contrast, glutamate receptor (NMDA, KA, AMPA) differences were muted or absent. Here we asked if genotype differentiated the form, pharmacology, or expression of glutamate and GABA receptors in pathologically vulnerable and spared cortical regions, with a view to determining whether such subject factors might influence the severity of alcohol-induced brain damage. Cerebrocortical tissue was obtained at autopsy under informed, written consent from uncomplicated and alcoholic-cirrhotic Caucasian (predominantly Anglo-Celtic) cases, together with matched controls and cases with cirrhosis of non-alcoholic origin. All subjects had pathological confirmation of liver and brain diagnosis; none had been polydrug abusers. Samples were processed for synaptic membrane receptor binding, mRNA analysis by quantitative RT-PCR, and protein analysis by Western blot. Genotyping was performed by PCR methods, in the main using published primers. Several genetic markers differentiated between our alcoholic and control subjects, including the GABAA receptor 2 subunit (GABB2) gene ( 2 (3) 10.329, P 0.01), the dopamine D2 receptor B1 (DRD2B) allele ( 2 (3) 10.109, P 0.01) and a subset of the alcohol dehydrogenase-3 (ADH3) alleles ( 2 (2) 4.730, P 0.05). Although neither the type-2 glutamate transporter (EAAT2) nor the serotonin transporter (5HTT) genes were significantly associated with alcoholism, only EAAT2 heterozygotes showed a significant association between ADH3 genotype and alcoholism ( 2 (3) 7.475, P 0.05). Other interactions between genotypes were also observed. DRD2A, DRD2B, GABB2, EAAT2 and 5HTT genotypes did not divide alcoholic cases and controls on NMDA receptor parameters, although in combined subjects there was a significant DRD2B X Area Interaction with glutamateNMDA receptor efficacy (F(1,57) 4.67; P 0.05), measured as the extent of glutamate-enhanced MK801 binding. In contrast, there was a significant Case-group X ADH3 X Area Interaction with glutamateNMDA receptor efficacy (F(3,57) 2.97; P 0.05). When GABAA receptor subunit isoform expression was examined, significant Case-group X Genotype X Area X Isoform interactions were found for EAAT2 with subunit mRNA (F(1,37) 4.22; P0.05), for GABB2 with isoform protein (F(1,37) 5.69; P 0.05), and for DRD2B with isoform protein (F(2,34)5.69; P0.05). The results suggest that subjects’ genetic makeup may modulate the effectiveness of amino acid-mediated transmission in different cortical regions, and thereby influence neuronal vulnerability to excitotoxicity.
Resumo:
Severe long-term alcohol misuse leads to localized brain damage that is prominent in superior frontal cortex but less so in other cortical areas e.g. primary motor. Alcohol dependence is also associated with several genetic markers. GABAA receptor expression differs selectively between alcoholics and controls in a manner that conforms to the pathology, whereas glutamate receptors are much less regionally variable in these subjects. We determined whether genotype differentiated the pharmacology of glutamate-NMDA receptors and the expression GABAA receptor subunits transcripts in a locally appropriate way so as to influence the severity of alcohol-induced brain damage.
Resumo:
Chronic alcoholism leads to localized brain damage, which is prominent in superior frontal cortex but mild in motor cortex. The likelihood of developing alcohol dependence is associated with genetic markers. GABA-A receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the localized expression of glutamate N-methyl-D-aspartate (NMDA) and GABA-A receptors to influence the severity of alcohol-induced brain damage. Cerebral cortex tissue was obtained at autopsy from alcoholics without disease comorbid with alcoholics, alcoholics with cirrhosis, and matched controls. DRD2A, DRD2B, GABRB2, SLC1A2, and 5HTT genotypes did not divide alcoholic cases and controls on NMDA receptor parameters. In contrast, a specific alcohol dehydrogenase (ADHIC) genotype interacted significantly with NMDA efficacy and affinity in a region-specific manner SLC1A2 (glutamate transporter-2) genotype interacted significantly with local GABAA receptor b subunit mRNA expression, and ADHIC, DRD2B, SLC1A2, and APOE genotypes with b subunit isoform protein expression. In the latter instance, possession of the alcoholism- associated allele altered b isoform protein expression patterns toward a less-efficacious form of the GABA-A receptor in the pathologically vulnerable region. GABRB2 and GRIN2B (NMDA receptor 2B subunit} Genotypes were associated with significant regional difference in the pattern of b subunit protein isoform expression, but this was not influenced by alcoholism status. Genotype may modulate amino acid transmission locally so as to mediate neuronal vulnerability. This has implications for the effectiveness of pharmacological interventions aimed at ameliorating brain damage and, possibly, dependence.
Resumo:
AIMS Hyperinsulinism of infancy (HI) is characterized by unregulated insulin secretion in the presence of hypoglycaemia, often resulting in brain damage. Pancreatic resection for control of hypoglycaemia is frequently resisted because of the risk of diabetes mellitus (DM). We investigated retrospectively 62 children with HI from nine Australian treatment centres born between 1972 and 1998, comparing endocrine and neurological outcome in 28 patients receiving medical therapy alone with 34 who required pancreatic resection to control their hypoglycaemia. METHODS History, treatment and clinical course were ascertained from file audit and interview. Risk of DM (hazard ratio) attributable to age at surgery (< vs. greater than or equal to 100 days at last pancreatectomy) and extent of resection (< vs. greater than or equal to 95%) were calculated using Cox proportional hazards regression and categorical variables compared by the chi(2) -test. Neurological outcome (normal, mild deficit or severe deficit) was derived from the most authoritative source. RESULTS Surgically treated patients had a greater birthweight, earlier presentation and higher plasma insulin levels. Of 18 infants < 100 days and 16 greater than or equal to 100 days of age at surgery, four (all greater than or equal to 100 days) became diabetic as an immediate consequence of surgery and five (two < 100 days and three greater than or equal to 100 days) became diabetic 7-18 years later. Surgery greater than or equal to 100 days and pancreatectomy greater than or equal to 95% were associated with development of diabetes (HR = 12.61, CI 1.53-104.07 and HR = 7.03, CI 1.43-34.58, respectively). Neurodevelopmental outcome was no different between the surgical and medical groups with 44% overall with neurological deficits. Patients euglycaemic within 35 days of the first symptom of hypoglycaemia (Group A) had a better neurodevelopmental outcome than those still hypoglycaemic > 35 days from first presentation (Group B) (P = 0.007). Prolonged hypoglycaemia in Group B was due either to delayed diagnosis or to need for repeat surgery because of continued hypoglycaemia. Within Group A, medically treated patients (who presented later with apparently milder disease) had a higher incidence of neurodevelopmental deficit (n = 15, four mild, three severe deficit) compared with surgically treated patients (n = 18, two mild, none severe deficit) (P < 0.025). CONCLUSIONS Poor neurodevelopmental outcome remains a major problem in hyperinsulinism of infancy. Risk of diabetes mellitus with pancreatectomy varies according to age at surgery and extent of resection. Patients presenting early with severe disease have a better neurodevelopmental outcome and lower risk of diabetes if they are treated with early extensive surgery.
Resumo:
This article presents the proceedings of a symposium held at the meeting of the International Society for Biomedical Research on Alcoholism (ISBRA) in Mannheim, Germany, in October, 2004. Chronic alcoholism follows a fluctuating course, which provides a naturalistic experiment in vulnerability, resilience, and recovery of human neural systems in response to presence, absence, and history of the neurotoxic effects of alcoholism. Alcohol dependence is a progressive chronic disease that is associated with changes in neuroanatomy, neurophysiology, neural gene expression, psychology, and behavior. Specifically, alcohol dependence is characterized by a neuropsychological profile of mild to moderate impairment in executive functions, visuospatial abilities, and postural stability, together with relative sparing of declarative memory, language skills, and primary motor and perceptual abilities. Recovery from alcoholism is associated with a partial reversal of CNS deficits that occur in alcoholism. The reversal of deficits during recovery from alcoholism indicates that brain structure is capable of repair and restructuring in response to insult in adulthood. Indirect support of this repair model derives from studies of selective neuropsychological processes, structural and functional neuroimaging studies, and preclinical studies on degeneration and regeneration during the development of alcohol dependence and recovery from dependence. Genetics and brain regional specificity contribute to unique changes in neuropsychology and neuroanatomy in alcoholism and recovery. This symposium includes state-of-the-art presentations on changes that occur during active alcoholism as well as those that may occur during recovery-abstinence from alcohol dependence. Included are human neuroimaging and neuropsychological assessments, changes in human brain gene expression, allelic combinations of genes associated with alcohol dependence and preclinical studies investigating mechanisms of alcohol induced neurotoxicity, and neuroprogenetor cell expansion during recovery from alcohol dependence.
Resumo:
Chronic alcohol misuse by human subjects leads to neuronal loss in regions such as the superior frontal cortex (SFC). Propensity to alcoholism is associated with several genes. γ-Aminobutyric acid (GABA)A receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the regional presentation of GABAA and glutamate-NMDA (N-methyl-d-aspartate) receptors in SFC. Autopsy tissue was obtained from alcoholics without comorbid disease, alcoholics with liver cirrhosis, and matched controls. ADH1C, DRD2B, EAAT2, and APOE genotypes modulated GABAA-β subunit protein expression in SFC toward a less-effective form of the receptor. Most genotypes did not divide alcoholics and controls on glutamate-NMDA receptor pharmacology, although gender and cirrhosis did. Genotype may affect amino acid transmission locally to influence neuronal vulnerability.
Resumo:
The homeostasis of glutamate is critical to normal brain function; deficiencies in the regulation of extracellular glutamate are thought to be a major determinant of damage in hypoxic brains. Extracellular levels of glutamate are regulated mainly by plasmalemmal glutamate transporters. We have evaluated the distribution of the glutamate transporter GLAST and two splice variants of GLT-1 in the hypoxic neonatal pig brain using this as model of neonatal humans. In response to severe hypoxic insults, we observe a rapid loss of two glial glutamate transporters from specific brain regions, such as the CA1 region of the hippocampus, but not the dentate gyrus. The spatial distribution of loss accords with patterns of damage in these brains. Conversely, we demonstrate that hypoxia evokes the expression of a splice variant of GLT-1 in neurons. We suggest that this expression may be induced in response to elevated extracellular glutamate around these neurons, and that this splice variant may represent a useful marker for direct quantification of the extent of likely neuronal damage in hypoxic brains. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Very few empirically validated interventions for improving metacognitive skills (i.e., self-awareness and self-regulation) and functional outcomes have been reported. This single-case experimental study presents JM, a 36-year-old man with a very severe traumatic brain injury (TBI) who demonstrated long-term awareness deficits. Treatment at four years post-injury involved a metacognitive contextual intervention based on a conceptualization of neuro-cognitive, psychological, and socio-environmental factors contributing to his awareness deficits. The 16-week intervention targeted error awareness and self-correction in two real life settings: (a) cooking at home: and (b) volunteer work. Outcome measures included behavioral observation of error behavior and standardized awareness measures. Relative to baseline performance in the cooking setting, JM demonstrated a 44% reduction in error frequency and increased self-correction. Although no spontaneous generalization was evident in the volunteer work setting, specific training in this environment led to a 39% decrease in errors. JM later gained paid employment and received brief metacognitive training in his work environment. JM's global self-knowledge of deficits assessed by self-report was unchanged after the program. Overall, the study provides preliminary support for a metacognitive contextual approach to improve error awareness and functional Outcome in real life settings.