13 resultados para Bone Gla Protein

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of extracellular matrix materials as scaffolds for the repair and regeneration of tissues is receiving increased attention. The current study was undertaken to test whether extracellular matrix formed by osteoblasts in vitro could be used as a scaffold for osteoblast transplantation and induce new bone formation in critical size osseous defects in vivo. Human osteoblasts derived from alveolar bone were cultured in six-well plates until confluent and then in mineralization media for a further period of 3 weeks to form an osteoblast-mineralized matrix complex. Histologically, at this time point a tissue structure with a connective tissue-like morphology was formed. Type I collagen was the major extracellular component present and appeared to determine the matrix macrostructure. Other bone-related proteins such as alkaline phosphatase (ALP), bone morphogenetic protein (BMP)-2 and -4, bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN) also accumulated in the matrix. The osteoblasts embedded in this matrix expressed mRNAs for these bone-related proteins very strongly. Nodules of calcification were detected in the matrix and there was a correlation between calcification and the distribution of BSP and OPN. When this matrix was transplanted into a critical size bone defect in skulls of inummodeficient mice (SCID), new bone formation occurred. Furthermore, the cells inside the matrix survived and proliferated in the recipient sites, and were traceable by the human-specific Alu gene sequence using in situ hybridization. It was found that bone-forming cells differentiated from both transplanted human osteoblasts and activated endogenous mesenchymal cells. This study indicates that a mineralized matrix, formed by human osteoblasts in vitro, can be used as a scaffold for osteoblast transplantation, which subsequently can induce new bone formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A loss of function mutation in growth differentiation factor 9 (GDF9) in sheep causes increased ovulation rate and infertility in a dosage-sensitive manner. Spontaneous dizygotic (DZ) twinning in the human is under genetic control and women with a history of DZ twinning have an increased incidence of multiple follicle growth and multiple ovulation. We sequenced the GDF9 coding region in DNA samples from 20 women with DZ twins and identified a four-base pair deletion in GDF9 in two sisters with twins from one family. We screened a further 429 families and did not find the loss of function mutation in any other families. We genotyped eight single nucleotide polymorphisms across the GDF9 locus in 379 families with two sisters who have both given birth to spontaneous DZ twins (1527 individuals) and 226 triad families with mothers of twins and their parents (723 individuals). Using case control analysis and the transmission disequilibrium test we found no evidence for association between common variants in GDF9 and twinning in the families. We conclude that rare mutations in GDF9 may influence twinning, but twinning frequency is not associated with common variation in GDF9.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context: Genes from the ovarian bone morphogenetic signaling pathway (GDF9 and BMP15) are critical for normal human fertility. We previously identified a deletion mutation in GDF9 in sisters with spontaneous dizygotic (DZ) twins, but the prevalence of rare GDF9 variants in twinning families is unknown. Objective: The objective was to evaluate the frequency of rare variants in GDF9 in families with a history of DZ twinning. Design and Subjects: We recruited 3450 individuals from 915 DZ twinning families (1693 mothers of twins) and 1512 controls of Caucasian origin. One mother of DZ twins was selected from 279 of the 915 families, and a DNA sample was screened for rare variants in GDF9 using denaturant HPLC. Variants were confirmed by DNA sequencing and genotyped in the entire sample by matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. Results: We found two novel insertion/deletions (c.392-393insT, c.1268-1269delAA) and four missense alterations in the GDF9 sequence in mothers of twins. Two of the missense variants (c.307C > T, p.Pro103Ser and c.362C > T, p.Thr121Leu) were located in the proregion of GDF9 and two (c.1121C > T, p.Pro374Leu and c.1360C > T, p.Arg454Cys) in the mature protein region. For each variant, the frequencies were higher in cases compared with controls. The proportion of mothers of DZ twins carrying any variant (4.12%) was significantly higher (P < 0.0001) than the proportion of carriers in controls (2.29%). Conclusion: We describe new variants in the GDF9 gene that are significantly more common in mothers of DZ twins than controls, suggesting that rare GDF9 variants contribute to the likelihood of DZ twinning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1, During embryonic development, a diverse array of neurons and glia are generated at specific positions along the dorsoventral and rostro-caudal axes of the spinal cord from a common pool of precursor cells. 2. This cell type diversity can be distinguished by the spatially and temporally coordinated expression of several transcription factors that are also linked to cell type specification at a very early stage of spinal cord development. 3, Recent studies have started to uncover that the generation of cell type diversity in the developing spinal cord. Moreover, distinct cell types in the spinal cord appear to be determined by the spatially and temporally coordinated expression of transcription factors. 4. The expression of these factors also appears to be controlled by gradients of factors expressed by ventral and dorsal midline cells, namely Sonic hedgehog and members of the transforming growth factor-beta family. 5, Changes in the competence of precursor cells and local cell interactions may also play important roles in cell type specification within the developing spinal cord.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives. Receptor activator of NF-kappa B ligand (RANKL) and osteoprotegerin (OPG) have been demonstrated to be critical regulators of osteoclast generation and activity. In addition, RANKL has been implicated as an important mediator of bone erosion in rheumatoid arthritis (RA). However, the expression of RANKL and OPG at sites of pannus invasion into bone has not been examined. The present study was undertaken to further elucidate the contribution of this cytokine system to osteoclastogenesis and subsequent bone erosion in RA by examining the pattern of protein expression for RANKL, OPG and the receptor activator of NF-kappa B (RANK) in RA at sites of articular bone erosion. Methods. Tissues from 20 surgical procedures from 17 patients with RA were collected as discarded materials. Six samples contained only synovium or tenosynovium remote from bone, four samples contained pannus-bone interface with adjacent synovium and 10 samples contained both synovium remote from bone and pannu-bone interface with adjacent synovium. Immunohistochemistry was used to characterize the cellular pattern of RANKL, RANK and OPG protein expression immediately adjacent to and remote from sites of bone erosion. Results. Cellular expression of RANKL protein was relatively restricted in the bone microenvironment; staining was focal and confined largely to sites of osteoclast-mediated erosion at the pannus-bone interface and at sites of subchondral bone erosion. RANK-expressing osteoclast precursor cells were also present in these sites. OPG protein expression was observed in numerous cells in synovium remote from bone but was more limited at sites of bone erosion, especially in regions associated with RANKL expression. Conclusions. The pattern of RANKL and OPG expression and the presence of RANK-expressing osteoclast precursor cells at sites of bone erosion in RA contributes to the generation of a local microenvironment that favours osteoclast differentiation and activity. These data provide further evidence implicating RANKL in the pathogenesis of arthritis-induced joint destruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfate plays an essential role during growth, development, bone/cartilage formation, and cellular metabolism. In this study, we have isolated the human sulfate anion transporter cDNA (hsat-1; SCL26A1) and gene (SAT1), determined its protein function in Xenopus oocytes and characterized SAT1 promoter activity in mammalian renal cell lines. hsat-1 encodes a protein of 75 kDa, with 12 putative transmembrane domains, that induces sulfate, chloride, and oxalate transport in Xenopus oocytes. hsat-1 mRNA is expressed most abundantly in the kidney and liver, with lower levels in the pancreas, testis, brain, small intestine, colon, and lung. The SAT1 gene is comprised of four exons stretching 6 kb in length, with an alternative splice site formed from an optional exon. SAT1 5' flanking region led to promoter activity in renal OK and LLC-PK1 cells. Using SAT1 5' flanking region truncations, the first 135 bp was shown to be sufficient for basal promoter activity. Mutation of the activator protein-1 (AP-1) site at position 252 in the SAT1 promoter led to loss of transcriptional activity, suggesting its requirement for SAT1 basal expression. This study represents the first functional characterization of the human SAT1 gene and protein encoded by the anion transporter hsat-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The c-fms gene encodes the receptor for macrophage colony-stimulating factor (CSF-1). The gene is expressed selectively in the macrophage and trophoblast cell lineages. Previous studies have indicated that sequences in intron 2 control transcript elongation in tissue-specific and regulated expression of c-fms. In humans, an alternative promoter was implicated in expression of the gene in trophoblasts. We show that in mice, c-fms transcripts in trophoblasts initiate from multiple points within the 2-kilobase (kb) region flanking the first coding exon. A reporter gene construct containing 3.5 kb of 5' flanking sequence and the down-stream intron 2 directed expression of enhanced green fluorescent protein (EGFP) to both trophoblasts and macrophages. EGFP was detected in trophoblasts from the earliest stage of implantation examined at embryonic day 7.5. During embryonic development, EGFP highlighted the large numbers of c-fms-positive macrophages, including those that originate from the yolk sac. In adult mice, EGFP location Was consistent with known F4/80-positive macrophage populations, including Langerhans cells of the skin, and permitted convenient sorting of isolated tissue macrophages from disaggregated tissue. Expression of EGFP in transgenic mice was dependent on intron 2 as no lines with detectable EGFP expression were obtained where either all of intron 2 or a conserved enhancer element FIRE (the Fms intronic regulatory element) was removed. We have therefore defined the elements required to generate myeloid- and trophoblast-specific transgenes as well as a model system for the study of mononuclear phagocyte development and function. (C) 2003 by The American Society of Hematology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Tuberculosis is an important cause of wasting. The functional consequences of wasting and recovery may depend on the distribution of lost and gained nutrient stores between protein and fat masses. Objective: The goal was to study nutrient partitioning, ie, the proportion of weight change attributable to changes in fat mass (FM) versus protein mass (PM), during anti mycobacterial treatment. Design: Body-composition measures were made of 21 men and 9 women with pulmonary tuberculosis at baseline and after 1 and 6 mo of treatment. All subjects underwent dual-energy X-ray absorptiometry and deuterium bromide dilution tests, and a four-compartment model of FM, total body water (TBW), bone minerals (BM), and PM was derived. The ratio of PM to FM at any time was expressed as the energy content (p-ratio). Changes in the p-ratio were related to disease severity as measured by radiologic criteria. Results: Patients gained 10% in body weight (P < 0.001) from baseline to month 6. This was mainly due to a 44% gain in FM (P < 0.001); PM, BM, and TBW did not change significantly. Results were similar in men and women. The p-ratio decreased from baseline to month 1 and then fell further by month 6. Radiologic disease severity was not correlated with changes in the p-ratio. Conclusions: Microbiological cure of tuberculosis does not restore PM within 6 mo, despite a strong anabolic response. Change in the p-ratio is a suitable parameter for use in studying the effect of disease on body composition because it allows transformation of such effects into a normal distribution across a wide range of baseline proportion between fat and protein mass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The EF-hand superfamily of calcium binding proteins includes the S100, calcium binding protein, and troponin subfamilies. This study represents a genome, structure, and expression analysis of the S100 protein family, in mouse, human, and rat. We confirm the high level of conservation between mammalian sequences but show that four members, including S100A12, are present only in the human genome. We describe three new members of the S100 family in the three species and their locations within the S100 genomic clusters and propose a revised nomenclature and phylogenetic relationship between members of the EF-hand superfamily. Two of the three new genes were induced in bone-marrow-derived macrophages activated with bacterial lipopolysaccharide, suggesting a role in inflammation. Normal human and murine tissue distribution profiles indicate that some members of the family are expressed in a specific manner, whereas others are more ubiquitous. Structure-function analysis of the chemotactic properties of murine S100A8 and human S100A12, particularly within the active hinge domain, suggests that the human protein is the functional homolog of the murine protein. Strong similarities between the promoter regions of human S100A12 and murine S100A8 support this possibility. This study provides insights into the possible processes of evolution of the EF-hand protein superfamily. Evolution of the S100 proteins appears to have occurred in a modular fashion, also seen in other protein families such as the C2H2-type zinc-finger family. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NF-kappaB activation is associatied with the inflammation of bone destruction and certain cancers. The NEMO (NF-kB essential modulator)-binding domain (NBD) protein inhibits the activation of NF-kappaB. Cellular studies have shown that the NBD protein inhibits osteoclastogenesis. Mimicking infection with a lipopolysaccharide injection in mice resulted in activated osteoclasts and reduced bone mineral density. These responses are inhibited with the NBD peptide. In a mouse model of rheumatoid arthritis, collagen-induced arthritis, treatment with the NBD protein delayed the onset, lowered the incidence and decreased the severity of the arthritis. NF-kappaB is a target in the inflammation associated with bone destruction. A key issue is whether or not this important transcription factor can be inhibited without causing excessive adverse effects and/or toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth hormone (GH) regulates many of the factors responsible for controlling the development of bone marrow progenitor cells (BMPCs). The aim of this study was to elucidate the role of GH in osteogenic differentiation of BMPCs using GH receptor null mice (GHRKO). BMPCs from GHRKO and their wild-type (WT) littermates were quantified by flow cytometry and their osteogenic differentiation in vitro was determined by cell morphology, real-time RT-PCR, and biochemical analyses. We found that freshly harvested GHRKO marrow contains 3% CD34 (hernatopoietic lineage), 43.5% CD45 (monocyte/macrophage lineage), and 2.5% CD106 positive (CFU-F/BMPC) cells compared to 11.2%, 45%, and 3.4% positive cells for (WT) marrow cells, respectively. When cultured for 14 days under conditions suitable for CFU-F expansion, GHRKO marrow cells lost CD34 positivity, and were markedly reduced for CD45, but 3- to 4-fold higher for CD106. While WT marrow cells also lost CD34 expression, they maintained CD45 and increased CD106 levels by 16-fold. When BMPCs from GHRKO mice were cultured under osteogenic conditions, they failed to elongate, in contrast to WT cells. Furthermore, GHRKO cultures expressed less alkaline phosphatase, contained less mineralized calcium, and displayed lower osteocalcin expression than WT cells. However, GHRKO cells displayed similar or higher expression of cbfa-1, collagen 1, and osteopontin mRNA compared to WT. In conclusion, we show that GH has an effect on the proportions of hematopoietic and mesenchymal progenitor cells in the bone marrow, and that GH is essential for both the induction and later progression of osteogenesis. (c) 2005 Elsevier Inc. All rights reserved.