6 resultados para Bartholdi-Walther

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic analysis in animals has been used for many applications, such as kinship analysis, for determining the sire of an offspring when a female has been exposed to multiple males, determining parentage when an animal switches offspring with another dam, extended lineage reconstruction, estimating inbreeding, identification in breed registries, and speciation. It now also is being used increasingly to characterize animal materials in forensic cases. As such, it is important to operate under a set of minimum guidelines that assures that all service providers have a template to follow for quality practices. None have been delineated for animal genetic identity testing. Based on the model for human DNA forensic analyses, a basic discussion of the issues and guidelines is provided for animal testing to include analytical practices, data evaluation, nomenclature, allele designation, statistics, validation, proficiency testing, lineage markers, casework files, and reporting. These should provide a basis for professional societies and/or working groups to establish more formalized recommendations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a critical comparison of major changes in engineering education in both Australia and Europe. European engineering programs are currently being reshaped by the Bologna process, representing a move towards quality assurance in higher education and the mutual recognition of degrees among universities across Europe. Engineering education in Australia underwent a transformation after the 1996 review of engineering education1. The paper discusses the recent European developments in order to give up-to-date information on this fast changing and sometimes obscure process. The comparison draws on the implications of the Bologna Process on the German engineering education system as an example. It concludes with issues of particular interest, which can help to inform the international discussion on how to meet today’s challenges for engineering education. These issues include ways of achieving diversityamong engineering programs, means of enabling student and staff mobility, and the preparation of engineering students for professional practic e through engineering education. As a result, the benefits of outcomes based approaches in education are discussed. This leads to an outlook for further research into the broader attributes required by future professional engineers. © 2005, Australasian Association for Engineering Education

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustainable design education is vital for engineering students. This is to allow them to meet the challenges both engineering and the wider community will face in the future. This need has not only been mandated by Engineers Australia’s graduate attributes from an Australian perspective, but more widely the issue of sustainability is one of the greatest challenges humanity has ever faced. Engineers need to be at the forefront of this challenge, because we can not only do the greatest good, but have the potential to cause the greatest harm. The biggest question with respect to the education of engineers about sustainable design is what do engineers need to know, and how best to enable this learning. This paper argues that since the entire phenomenon of sustainable design is constantly growing and changing, it is only by looking at practitioners currently trying design sustainably, and their ways of experiencing sustainable design, can we hope to articulate what it is, and therefore what and how we need to teach engineering students. It also argues that to accommodate sustainable design within engineering, we need to go further and transform the engineering profession to enable it to meet the challenges that sustainability presents. © 2005, Australasian Association for Engineering Education