8 resultados para Auger electron spectroscopy

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photo-electron spectroscopy as an analytical tool has only received limited interest in the field of mineral science. Photo-electron spectroscopy, together with Auger electron spectroscopy, gives information about the positions of the energy levels in atoms or molecules. Application of this technique on solid materials will result in information of the band structure of these materials. The principle of photo electron spectroscopy is rather simple: photons with certain energy (wavelength) are allowed to collide with an atom, molecule or a solid material. These photons can then interact with electrons present in the atoms and one of these electrons can be excited from its orbital resulting in a situation similar to a free electron plus a positively charged atom or molecule.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zr-Laponite pillared clays were prepared and used as supports of nickel catalysts for the methane reforming reaction with carbon dioxide to synthesis gas. The structural and textural characteristics of supports and catalysts were systematically examined by N-2 adsorption/desorption and X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron spectroscopy (TEM) techniques. The catalytic performance and carbon deposition were investigated. It is found that Zr-Laponite pillared clays are promising catalyst supports for carbon dioxide reforming of methane. The pore structure and surface properties of such supports greatly affect the catalytic behaviors of catalysts derived. Carbon deposition on catalysts was also affected by the property and structure of supports. The sintering of nickel metal and zirconia was another factor responsible for catalyst deactivation. This new-type nickel supported catalyst Ni/Zr-Laponite(8), with well-developed porosity, gave a higher initial conversion and a relatively long-term stability, and is therefore a promising catalyst for potential application to carbon dioxide reforming of methane to synthesis gas. (C) 2002 Elsevier Science B.V All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visible pump-probe spectroscopy has been used to identify and characterize short-lived metal-to-metal charge transfer (MMCT) excited states in a group of cyano-bridged mixed-valence complexes of the formula [(LCoNCMII)-N-III(CN)(5)](-), where L is a pentadentate macrocyclic pentaamine (L-14) or triamine-dithiaether (L-14S) and M is Fe or Ru. Nanosecond pump-probe spectroscopy on frozen solutions of [(LCoNCFeII)-Co-14-N-III(CN)(5)](-) and [(LCoNCFeII)-Co-14S-N-III(CN)(5)](-) at 11 K enabled the construction of difference transient absorption spectra that featured a rise in absorbance in the region of 350-400 nm consistent with the generation of the ferricyanide chromophore of the photoexcited complex. The MMCT excited state of the Ru analogue [(LCoNCRuII)-Co-14-N-III(CN)(5)](-) was too short-lived to allow its detection. Femtosecond pump-probe spectroscopy on aqueous solutions of [(LCoNCFeII)-Co-14-N-III(CN)(5)](-) and [(LCoNCFeII)-Co-14S-N-III(CN)(5)](-) at room temperature enabled the lifetimes of their Co-II-Fe-III MMCT excited states to be determined as 0.8 and 1.3 ps, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The XSophe computer simulation software suite consisting of a daemon, the XSophe interface and the computational program Sophe is a state of the art package for the simulation of electron paramagnetic resonance spectra. The Sophe program performs the computer simulation and includes a number of new technologies including; the SOPHE partition and interpolation schemes, a field segmentation algorithm, homotopy, parallelisation and spectral optimisation. The SOPHE partition and interpolation scheme along with a field segmentation algorithm greatly increases the speed of simulations for most systems. Multidimensional homotopy provides an efficient method for accurately tracing energy levels and hence tracing transitions in the presence of energy level anticrossings and looping transitions and allowing computer simulations in frequency space. Recent enhancements to Sophe include the generalised treatment of distributions of orientational parameters, termed the mosaic misorientation linewidth model and a faster more efficient algorithm for the calculation of resonant field positions and transition probabilities. For complex systems the parallelisation enables the simulation of these systems on a parallel computer and the optimisation algorithms in the suite provide the experimentalist with the possibility of finding the spin Hamiltonian parameters in a systematic manner rather than a trial-and-error process. The XSophe software suite has been used to simulate multifrequency EPR spectra (200 MHz to 6 00 GHz) from isolated spin systems (S > ~½) and coupled centres (Si, Sj _> I/2). Griffin, M.; Muys, A.; Noble, C.; Wang, D.; Eldershaw, C.; Gates, K.E.; Burrage, K.; Hanson, G.R."XSophe, a Computer Simulation Software Suite for the Analysis of Electron Paramagnetic Resonance Spectra", 1999, Mol. Phys. Rep., 26, 60-84.