7 resultados para Auger electron spectroscopy

em CaltechTHESIS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Energies and relative intensities of gamma transitions in 152Sm, 152Gd, 154Gd, 166Er, and 232U following radioactive decay have been measured with a Ge(Li) spectrometer. A peak fitting program has been developed to determine gamma ray energies and relative intensities with precision sufficient to give a meaningful test of nuclear models. Several previously unobserved gamma rays were placed in the nuclear level schemes. Particular attention has been paid to transitions from the beta and gamma vibrational bands, since the gamma ray branching ratios are sensitive tests of configuration mixing in the nuclear levels. As the reduced branching ratios depend on the multipolarity of the gamma transitions, experiments were performed to measure multipole mixing ratios for transitions from the gamma vibrational band. In 154Gd, angular correlation experiments showed that transitions from the gamma band to the ground state band were predominantly electric quadrupole, in agreement with the rotational model. In 232U, the internal conversion spectrum has been studied with a Si(Li) spectrometer constructed for electron spectroscopy. The strength of electric monopole transitions and the multipolarity of some gamma transitions have been determined from the measured relative electron intensities.

The results of the experiments have been compared with the rotational model and several microscopic models. Relative B(E2) strengths for transitions from the gamma band in 232U and 166Er are in good agreement with a single parameter band mixing model, with values of z2= 0.025(10) and 0.046(2), respectively. Neither the beta nor the gamma band transition strengths in 152Sm and 154Gd can be accounted for by a single parameter theory, nor can agreement be found by considering the large mixing found between the beta and gamma bands. The relative B(E2) strength for transitions from the gamma band to the beta band in 232U is found to be five times greater than the strength to the ground state band, indicating collective transitions with strength approximately 15 single particle units.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The technique of variable-angle, electron energy-loss spectroscopy has been used to study the electronic spectroscopy of the diketene molecule. The experiment was performed using incident electron beam energies of 25 eV and 50 eV, and at scattering angles between 10° and 90°. The energy-loss region from 2 eV to 11 eV was examined. One spin-forbidden transition has been observed at 4.36 eV and three others that are spin-allowed have been located at 5.89 eV, 6.88 eV and 7.84 eV. Based on the intensity variation of these transitions with impact energy and scattering angle, and through analogy with simpler molecules, the first three transitions are tentatively assigned to an n → π* transition, a π - σ* (3s) Rydberg transition and a π → π* transition.

Thermal decomposition of chlorodifluoromethane, chloroform, dichloromethane and chloromethane under flash-vacuum pyrolysis conditions (900-1100°C) was investigated by the technique of electron energy-loss spectroscopy, using the impact energy of 50 eV and a scattering angle of 10°. The pyrolytic reaction follows a hydrogen-chloride α-elimination pathway. The difluoromethylene radical was produced from chlorodifluoromethane pyrolysis at 900°C and identified by its X^1 A_1 → A^1B_1 band at 5.04 eV.

Finally, a number of exploratory studies have been performed. The thermal decomposition of diketene was studied under flash vacuum pressures (1-10 mTorr) and temperatures ranging from 500°C to 1000°C. The complete decomposition of the diketene molecule into two ketene molecules was achieved at 900°C. The pyrolysis of trifluoromethyl iodide molecule at 1000°C produced an electron energy-loss spectrum with several iodine-atom, sharp peaks and only a small shoulder at 8.37 eV as a possible trifluoromethyl radical feature. The electron energy-loss spectrum of trichlorobromomethane at 900°C mainly showed features from bromine atom, chlorine molecule and tetrachloroethylene. Hexachloroacetone decomposed partially at 900°C, but showed well-defined features from chlorine, carbon monoxide and tetrachloroethylene molecules. Bromodichloromethane molecule was investigated at 1000°C and produced a congested, electron energy-loss spectrum with bromine-atom, hydrogen-bromide, hydrogen-chloride and tetrachloroethylene features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presented doctoral research utilizes time-resolved spectroscopy to characterize protein dynamics and folding mechanisms. We resolve millisecond-timescale folding by coupling time-resolved fluorescence energy transfer (trFRET) to a continuous flow microfluidic mixer to obtain intramolecular distance distributions throughout the folding process. We have elucidated the folding mechanisms of two cytochromes---one that exhibits two-state folding (cytochrome cb562) and one that has both a kinetic refolding intermediate ensemble and a distinct equilibrium unfolding intermediate (cytochrome c552). Our data reveal that the distinct structural features of cytochrome c552 contribute to its thermostability.

We have also investigated intrachain contact dynamics in unfolded cytochrome cb562 by monitoring electron transfer, which occurs as the heme collides with a ruthenium photosensitizer, covalently bound to residues along the polypeptide. Intrachain diffusion for chemically denatured proteins proceeds on the microsecond timescale with an upper limit of 0.1 microseconds. The power-law dependence (slope = -1.5) of the rate constants on the number of peptide bonds between the heme and Ru complex indicate that cytochrome cb562 is minimally frustrated.

In addition, we have explored the pathway dependence of electron tunneling rates between metal sites in proteins. Our research group has converted cytochrome b562 to a c-type cytochrome with the porphyrin covalently bound to cysteine sidechains. We have investigated the effects of the changes to the protein structure (i.e., increased rigidity and potential new equatorial tunneling pathways) on the electron transfer rates, measured by transient absorption, in a series of ruthenium photosensitizer-modified proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-step electron tunneling, or “hopping,” has become a fast-developing research field with studies ranging from theoretical modeling systems, inorganic complexes, to biological systems. In particular, the field is exploring hopping mechanisms in new proteins and protein complexes, as well as further understanding the classical biological hopping systems such as ribonuclease reductase, DNA photolyases, and photosystem II. Despite the plethora of natural systems, only a few biologically engineered systems exist. Engineered hopping systems can provide valuable information on key structural and electronic features, just like other kinds of biological model systems. Also, engineered systems can harness common biologic processes and utilize them for alternative reactions. In this thesis, two new hopping systems are engineered and characterized.

The protein Pseudomonas aeruginosa azurin is used as a building block to create the two new hopping systems. Besides being well studied and amenable to mutation, azurin already has been used to successfully engineer a hopping system. The two hopping systems presented in this thesis have a histidine-attached high potential rhenium 4,7-dimethyl-1,10-phenanthroline tricarbonyl [Re(dmp)(CO)3] + label which, when excited, acts as the initial electron acceptor. The metal donor is the type I copper of the azurin protein. The hopping intermediates are all tryptophan, an amino acid mutated into the azurin at select sites between the photoactive metal label and the protein metal site. One system exhibits an inter-molecular hopping through a protein dimer interface; the other system undergoes intra-molecular multi-hopping utilizing a tryptophan “wire.” The electron transfer reactions are triggered by excitation of the rhenium label and monitored by UV-Visible transient absorption, luminescence decays measurements, and time-resolved Infrared spectroscopy (TRIR). Both systems were structurally characterized by protein X-ray crystallography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complementary techniques of low-energy, variable-angle electron-impact spectroscopy and ultraviolet variable-angle photoelectron spectroscopy have been used to study the electronic spectroscopy and structure of several series of molecules. Electron-impact studies were performed at incident beam energies between 25 eV and 100 eV and at scattering angles ranging from 0° to 90°. The energy-loss regions from 0 eV to greater than 15 eV were studied. Photoelectron spectroscopic studies were conducted using a HeI radiation source and spectra were measured at scattering angles from 45° to 90°. The molecules studied were chosen because of their spectroscopic, chemical, and structural interest. The operation of a new electron-impact spectrometer with multiple-mode target source capability is described. This spectrometer has been used to investigate the spin-forbidden transitions in a number of molecular systems.

The electron-impact spectroscopy of the six chloro-substituted ethylenes has been studied over the energy-loss region from 0-15 eV. Spin-forbidden excitations corresponding to the π → π*, N → T transition have been observed at excitation energies ranging from 4.13 eV in vinyl chloride to 3.54 eV in tetrachloroethylene. Symmetry-forbidden transitions of the type π → np have been oberved in trans-dichloroethyene and tetrachlor oethylene. In addition, transitions to many states lying above the first ionization potential were observed for the first time. Many of these bands have been assigned to Rydberg series converging to higher ionization potentials. The trends observed in the measured transition energies for the π → π*, N → T, and N → V as well as the π → 3s excitation are discussed and compared to those observed in the methyl- and fluoro- substituted ethylenes.

The electron energy-loss spectra of the group VIb transition metal hexacarbonyls have been studied in the 0 eV to 15 eV region. The differential cross sections were obtained for several features in the 3-7 eV energy-loss region. The symmetry-forbidden nature of the 1A1g1A1g, 2t2g(π) → 3t2g(π*) transition in these compounds was confirmed by the high-energy, low-angle behavior of their relative intensities. Several low lying transitions have been assigned to ligand field transitions on the basis of the energy and angular behavior of the differential cross sections for these transitions. No transitions which could clearly be assigned to singlet → triplet excitations involving metal orbitals were located. A number of states lying above the first ionization potential have been observed for the first time. A number of features in the 6-14 eV energy-loss region of the spectra of these compounds correspond quite well to those observed in free CO.

A number of exploratory studies have been performed. The π → π*, N → T, singlet → triplet excitation has been located in vinyl bromide at 4.05 eV. We have also observed this transition at approximately 3.8 eV in a cis-/trans- mixture of the 1,2-dibromoethylenes. The low-angle spectrum of iron pentacarbonyl was measured over the energy-loss region extending from 2-12 eV. A number of transitions of 8 eV or greater excitation energy were observed for the first time. Cyclopropane was also studied at both high and low angles but no clear evidence for any spin- forbidden transitions was found. The electron-impact spectrum of the methyl radical resulting from the pyrolysis of tetramethyl tin was obtained at 100 eV incident energy and at 0° scattering angle. Transitions observed at 5.70 eV and 8.30 eV agree well with the previous optical results. In addition, a number of bands were observed in the 8-14 eV region which are most likely due to Rydberg transitions converging to the higher ionization potentials of this molecule. This is the first reported electron-impact spectrum of a polyatomic free radical.

Variable-angle photoelectron spectroscopic studies were performed on a series of three-membered-ring heterocyclic compounds. These compounds are of great interest due to their highly unusual structure. Photoelectron angular distributions using HeI radiation have been measured for the first time for ethylene oxide and ethyleneimine. The measured anisotropy parameters, β, along with those measured for cyclopropane were used to confirm the orbital correlations and photoelectron band assignments. No high values of β similar to those expected for alkene π orbitals were observed for the Walsh or Forster-Coulson-Moffit type orbitals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Redox-active probes are designed and prepared for use in DNA-mediated electron transfer studies. These probes consist of ruthenium(II) complexes bound to nucleosides that possess metal-binding ligands. Low- and high-potential oxidants are synthesized from these modified nucleosides and display reversible one-electron electrochemical behavior. The ruthenium-modified nucleosides exhibit distinct charge-transfer transitions in the visible region that resemble those of appropriate model complexes. Resonance Raman and time-resolved emission spectroscopy are used to characterize the nature of these transitions.

The site-specific incorporation of these redox-active probes into oligonucleotides is explored using post-synthetic modification and solid-phase synthetic methods. The preparation of the metal-binding nucleosides, their incorporation into oligonucleotides, and characterization of the resulting oligonucleotides is described. Because the insertion of these probes into modified oligonucleotides using post-synthetic modification is unsuccessful, solid-phase synthetic methods are explored. These efforts lead to the first report of 3'-metallated oligonucleotides prepared completely by automated solid-phase synthesis. Preliminary efforts to prepare a bis-metallated oligonucleotide by automated synthesis are described.

The electrochemical, absorption, and emissive features of the ruthenium-modified oligonucleotides are unchanged from those of the precursor metallonucleoside. The absence of any change in these properties upon incorporation into oligonucleotides and subsequent hybridization suggests that the incorporated ruthenium(II) complex is a valuable probe for DNA-mediated electron transfer studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of meso-phenyloctamethylporphyrins covalently bonded at the 4'phenyl position to quinones via rigid bicyclo[2.2.2]octane spacers were synthesized for the study of the dependence of electron transfer reaction rate on solvent, distance, temperature, and energy gap. A general and convergent synthesis was developed based on the condensation of ac-biladienes with masked quinonespacer-benzaldehydes. From picosecond fluorescence spectroscopy emission lifetimes were measured in seven solvents of varying polarity. Rate constants were determined to vary from 5.0x109sec-1 in N,N-dimethylformamide to 1.15x1010 Sec-1 in benzene, and were observed to rise at most by about a factor of three with decreasing solvent polarity. Experiments at low temperature in 2-MTHF glass (77K) revealed fast, nearly temperature-independent electron transfer characterized by non-exponential fluorescence decays, in contrast to monophasic behavior in fluid solution at 298K. This example evidently represents the first photosynthetic model system not based on proteins to display nearly temperature-independent electron transfer at high temperatures (nuclear tunneling). Low temperatures appear to freeze out the rotational motion of the chromophores, and the observed nonexponential fluorescence decays may be explained as a result of electron transfer from an ensemble of rotational conformations. The nonexponentiality demonstrates the sensitivity of the electron transfer rate to the precise magnitude of the electronic matrix element, which supports the expectation that electron transfer is nonadiabatic in this system. The addition of a second bicyclooctane moiety (15 Å vs. 18 Å edge-to-edge between porphyrin and quinone) reduces the transfer rate by at least a factor of 500-1500. Porphyrinquinones with variously substituted quinones allowed an examination of the dependence of the electron transfer rate constant κET on reaction driving force. The classical trend of increasing rate versus increasing exothermicity occurs from 0.7 eV≤ |ΔG0'(R)| ≤ 1.0 eV until a maximum is reached (κET = 3 x 108 sec-1 rising to 1.15 x 1010 sec-1 in acetonitrile). The rate remains insensitive to ΔG0 for ~ 300 mV from 1.0 eV≤ |ΔG0’(R)| ≤ 1.3 eV, and then slightly decreases in the most exothermic case studied (cyanoquinone, κET = 5 x 109 sec-1).