2 resultados para Alternating Gradient Force Magnetometer (AGFM)
em University of Queensland eSpace - Australia
Resumo:
We present a method for characterizing microscopic optical force fields. Two dimensional vector force maps are generated by measuring the optical force applied to a probe particle for a grid of particle positions. The method is used to map Out the force field created by the beam from a lensed fiber inside a liquid filled microdevice. We find transverse gradient forces and axial scattering forces on the order of 2 pN per 10 mW laser power which are constant over a considerable axial range (> 35 mu m). These findings suggest Future useful applications of lensed fibers for particle guiding/sorting. The propulsion of a small particle at a constant velocity of 200 mu m s(-1) is shown.
Resumo:
This paper presents a new method to measure the sinking rates of individual phytoplankton “particles” (cells, chains, colonies, and aggregates) in the laboratory. Conventional particle tracking and high resolution video imaging were used to measure particle sinking rates and particle size. The stabilizing force of a very mild linear salinity gradient (1 ppt over 15 cm) prevented the formation of convection currents in the laboratory settling chamber. Whereas bulk settling methods such as SETCOL provide a single value of sinking rate for a population, this method allows the measurement of sinking rate and particle size for a large number of individual particles or phytoplankton within a population. The method has applications where sinking rates vary within a population, or where sinking rate-size relationships are important. Preliminary data from experiments with both laboratory and field samples of marine phytoplankton are presented here to illustrate the use of the technique, its applications, and limitations. Whereas this paper deals only with sinking phytoplankton, the method is equally valid for positively buoyant species, as well as nonbiological particles.