25 resultados para Aerobic exercises
em University of Queensland eSpace - Australia
Resumo:
A metabolic flux model was developed for Streptococcus zooepidemicus to compare the metabolism of glucose and maltose during aerobic batch cultivation. Lactic acid was the main product of glucose metabolism whereas acetic acid was the main product of maltose metabolism. This difference was chiefly attributed to the two-fold higher flux through NADH oxidase in maltose-grown cells that enabled the ATP generation rate to remain high despite a slower maltose consumption rate. The two-fold higher flux was matched by a two-fold increase in NADH oxidase activity, 2.53 +/- 0.1 mumol NADH min(-1) mg(-1) protein on maltose versus 1.07 +/- 0.04 Rmol NADH min(-1) mg(-1) protein on glucose, indicating that NADH oxidase activity is regulated by the energy status of the cell. Surprisingly, the energy status of the cell had little impact on hyaluronic acid (HA) yield and molecular weight. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The spatial arrangement and metabolic activity of 'Candidatus Competibacter phosphatis' was investigated in granular sludge from an anaerobic-aerobic sequencing batch reactor enriched for glycogen-accumulating organisms. In this process, the electron donor (acetate) and the electron acceptor (oxygen) were supplied sequentially in each phase. The organism, identified by fluorescence in situ hybridisation, was present throughout the granules; however, metabolic activity was limited to a 100-mum-thick layer immediately below the surface of the granules. To investigate the cause of this, oxygen microsensors and a novel microscale biosensor for volatile fatty acids were used in conjunction with chemical staining for intracellular storage polymers. It was found that the limited distribution of activity was caused by mass transport limitation of oxygen into the granules during the aerobic phase. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Objectives. To assess the efficacy of a prolotherapy injection and exercise protocol in the treatment of chronic nonspecific low back pain. Design. Randomized controlled trial with two- by- two factorial design, triple- blinded for injection status, and single- blinded for exercise status. Setting. General practice. Participants. One hundred ten participants with nonspecific low- back pain of average 14 years duration were randomized to have repeated prolotherapy ( 20% glucose/ 0.2% lignocaine) or normal saline injections into tender lumbo- pelvic ligaments and randomized to perform either flexion/ extension exercises or normal activity over 6 months. Main outcome measures: Pain intensity ( VAS) and disability scores ( Roland- Morris) at 2.5, 4, 6, 12, and 24 months. Results. Follow- up was achieved in 96% at 12 months and 80% at 2 years. Ligament injections, with exercises and with normal activity, resulted in significant and sustained reductions in pain and disability throughout the trial, but no attributable effect was found for prolotherapy injections over saline injections or for exercises over normal activity. At 12 months, the proportions achieving more than 50% reduction in pain from baseline by injection group were glucose- lignocaine: 0.46 versus saline: 0.36. By activity group these proportions were exercise: 0.41 versus normal activity: 0.39. Corresponding proportions for > 50% reduction in disability were glucose- lignocaine: 0.42 versus saline 0.36 and exercise: 0.36 versus normal activity: 0.38. There were no between group differences in any of the above measures. Conclusions. In chronic nonspecific low- back pain, significant and sustained reductions in pain and disability occur with ligament injections, irrespective of the solution injected or the concurrent use of exercises.
Resumo:
Various exercises are used to retrain the abdominal muscles in the management of low back pain and other musculoskeletal disorders. However. few studies have directly investigated the activity of all the abdominal muscles or the recruitment of regions of the abdominal muscles during these manoeuvres. This study examined the activity of different regions of transversus abdominis (TrA), obliquus internus (OI) and externus abdominis (OE), and rectus abdominis (RA), and movement of lumbar spine, pelvis and abdomen during inward movement of the lower abdominal wall, abdominal bracing, pelvic tilting, and inward movement of the lower and upper abdominal wall. Inward movement of the lower abdominal wall in supine produced greater activity of TrA compared to OI. OE and RA. During posterior pelvic tilting. middle OI was most active and with abdominal bracing. OE was predominately recruited. Regions of TrA were recruited differentially and in inverse relationship between lumbopelvic motion and TrA electromyography (EMG) was found. This study indicates that inward movement of the abdominal wall in supine produces the most independent activity of TrA relative to the other abdominal muscle, recruitment varies between regions of TrA, and observation of abdominal and lumbopelvic motion may assist in evalation of exercise performance. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Response of an aerobic upflow sludge blanket (AUSB) reactor system to the changes in operating conditions was investigated by varying two principle operating variables: the oxygenation pressure and the flow recirculation rate. The oxygenation pressure was varied between 0 and 25 psig (relative), while flow recirculation rates were between 1,300 and 600% correspondingly. The AUSB reactor system was able to handle a volumetric loading of as high as 3.8 kg total organic carbon (TOC)/m(3) day, with a removal efficiency of 92%. The rate of TOC removal by AUSB was highest at a pressure of 20 psig and it decreased when the pressure was increased to 25 psig and the flow recirculation rate was reduced to 600%. The TOC removal rate also decreased when the operating pressure was reduced to 0 and 15 psig, with corresponding increase in flow recirculation rates to 1,300 and 1,000%, respectively. Maintenance of a high dissolved oxygen level and a high flow recirculation rate was found to improve the substrate removal capacity of the AUSB system. The AUSB system was extremely effective in retaining the produced biomass despite a high upflow velocity and the overall sludge yield was only 0.24-0.32 g VSS/g TOC removed. However, the effluent TOC was relatively high due to the system's operation at a high organic loading.
Resumo:
Recent studies have determined that Pseudomonas aeruginosa can live in a biofilm mode within hypoxic mucus in the airways of patients with cystic fibrosis (CF). P. aeruginosa grown under anaerobic and biofilm conditions may better approximate in vivo growth conditions in the CF airways, and combination antibiotic susceptibility testing of anaerobically and biofilm-grown isolates may be more relevant than traditional susceptibility testing under planktonic aerobic conditions. We tested 16 multidrug-resistant isolates of P. aeruginosa derived from CF patients using multiple combination bactericidal testing to compare the efficacies of double and triple antibiotic combinations against the isolates grown under traditional aerobic planktonic conditions, in planktonic anaerobic conditions, and in biofilm mode. Both anaerobically grown and biofilm-grown bacteria were significantly less susceptible (P < 0.01) to single and combination antibiotics than corresponding aerobic planktonically grown isolates. Furthermore, the antibiotic combinations that were bactericidal under anaerobic conditions were often different from those that were bactericidal against the same organisms grown as biofilms. The most effective combinations under all conditions were colistin (tested at concentrations suitable for nebulization) either alone or in combination with tobramycin (10 mu g ml(-1)), followed by meropenem combined with tobramycin or ciprofloxacin. The findings of this study illustrate that antibiotic sensitivities are dependent on culture conditions and highlight the complexities of choosing appropriate combination therapy for multidrug-resistant P. aeruginosa in the CF lung.
Resumo:
In the microbial competition observed in enhanced biological phosphorus removal (EBPR) systems, an undesirable group of micro-organisms known as glycogen-accumulating organisms (GAOs) compete for carbon in the anaerobic period with the desired polyphosphate-accumulating organisms (PAOs). Some studies have suggested that a propionate carbon source provides PAOs with a competitive advantage over GAOs in EBPR systems; however, the metabolism of GAOs with this carbon source has not been previously investigated. In this study, GAOs were enriched in a laboratory-scale bioreactor with propionate as the sole carbon source, in an effort to better understand their biochemical processes. Based on comprehensive solid-, liquid- and gas-phase chemical analytical data from the bioreactor, a metabolic model was proposed for the metabolism of propionate by GAOs. The model adequately described the anaerobic stoichiometry observed through chemical analysis, and can be a valuable tool for further investigation of the competition between PAOs and GAOs, and for the optimization of the EBPR process. A group of Alphaproteobacteria dominated the biomass (96% of Bacteria) from this bioreactor, while post-fluorescence in situ hybridization (FISH) chemical staining confirmed that these Alphaproteobacteria produced poly-beta-hydroxyalkanoates (PHAs) anaerobically and utilized them aerobically, demonstrating that they were putative GAOs. Some of the Alphaproteobacteria were related to Defluvicoccus vanus (16% of Bacteria), but the specific identity of many could not be determined by FISH. Further investigation into the identity of other GAOs is necessary.
Resumo:
Oxygen consumption rates (OCR), aerobic mineralization and sulfate reduction rates (SRR) were studied in the permeable carbonate reef sediments of Heron Reef, Australia. We selected 4 stations with different hydrodynamic regimes for this study. In situ oxygen penetration into the sediments was measured with an autonomous microsensor profiler. Areal OCR were quantified from the measured oxygen penetration depth and volumetric OCR. Oxygen penetration and dynamics (median penetration depths at the 4 stations ranged between 0.3 and 2.2 cm), OCR (median 57 to 196 mmol C m(-2) d(-1)), aerobic mineralization (median 24 to 176 mmol C m(-2) d(-1)) and SRR (median 9 to 42 mmol C m(-2) d(-1)) were highly variable between sites. The supply of oxygen by pore water advection was a major cause for high mineralization rates by stimulating aerobic mineralization at all sites. However, estimated bottom water filtration rates could not explain the differences in volumetric OCR and SRR between the 4 stations. This suggests that local mineralization rates are additionally controlled by factors other than current driven pore water advection, e.g. by the distribution of the benthic fauna or by local differences in labile organic carbon supply from sources such as benthic photosynthesis. Carbon mineralization rates were among the highest reported for coral reef sediments, stressing the role of these sediments in the functioning of the reef ecosystem.