3 resultados para Abdominal Fat
em University of Queensland eSpace - Australia
Resumo:
1. Protein utilisation and turnover were measured in male chickens sampled from a line selected for high breast yield and a randombred control line (lines QL and CL, experiment 1) and in male chickens sampled from lines selected for either high or low abdominal fatness (lines FL and LL, experiment 2). In each experiment, 18 birds per line were given iso-energetic (12.9 MJ ME/kg) diets containing either 120 or 220 g CP/kg from 21 to 29 d (experiment 1) and 33 to 43 d (experiment 2). 2. Measurements were made of growth rate, food intake, body composition, excreta production and N-tau-methylhistidine excretion as a measure of myofibrillar protein breakdown, and fractional rates (%/d) of protein deposition, breakdown and synthesis were calculated. 3. In experiment 1, there were no significant differences between the line means for the fractional measures of protein turnover, but there was marked differential response in the two lines in the fractional rates of protein deposition, breakdown and synthesis, to increase in protein intake. The positive slope of the regressions of fractional (%/d) protein deposition and synthesis rates on protein intake (g/d/kg BW) were approximately 1.4- and 2.0-fold higher respectively in the QL than the CL line birds, and the negative slope of the regression of fractional breakdown rate on protein intake was approximately threefold greater in the CL than the QL line birds. 4. In experiment 2, fractional deposition rate was 6.2% lower, but fractional breakdown rate 9.4% higher in the LL than the FL birds, whilst there was essentially no difference in response of the FL and LL birds in the components of protein turnover to increase in protein intake. Line differences in deposition and breakdown rates were thus a reflection of the considerably higher (20%) food and hence protein intake in the FL than the LL birds. 5. The differential line responses in protein turnover in the two experiments suggest that selection for increased breast muscle yield and for reduced body fatness manipulate different physiological pathways in relation to protein turnover, but neither selection strategy results in an improvement in net protein utilisation at typical levels of protein intake by birds on commercial broiler diets, through a reduction in protein breakdown rate.
Resumo:
Background: It has been demonstrated that embryonic kidneys (metanephroi) xenotransplanted into the omentum of adult recipients continue to develop and display immune protection due to their more nave immune presentation. To date, this has been achieved using rat, pig and human metanephroi, with unilateral nephrectomy (UNX) of recipient rats a requisite of renal development. The aim of this study was to adapt this approach for use in mice and examine the parameters affecting successful onward development in this species. Methods: Metanephroi at embryonic age (E) 13.5 were transplanted either onto the body wall, abdominal fat pads or omentum of recipient isogenic C57/Bl6 mice using either sutures or polyglycolic acid mesh. Having established greatest success with polyglycolic acid mesh on the body wall, E12.5 and 15.5 days metanephroi from C57/Bl6 mice were then transplanted onto the body wall of control (non-pregnant non-UNX), UNX or 12.5 days post-coitum pregnant isogenic recipients. After 7 days, implanted tissue was harvested and examined using histology and immunohistochemistry for markers of renal maturation. The mean number of S-shaped bodies and glomeruli per section were recorded and statistically analysed for significant differences between all recipient groups and untransplanted metanephroi. The degree of development was scored qualitatively. Results: Transplanted E12.5 metanephroi developed S-shaped bodies and glomeruli in all recipient groups, although there were statistically higher numbers of S-shaped bodies in UNX (n = 2) and pregnant recipients (n = 9) than in control recipients (n = 4). Continued development, as indicated by mature vascularized glomeruli, was only observed in those E15.5 metanephroi transplanted into pregnant recipients (n = 11) with a 15.5-fold increase in S-shaped bodies and 4-fold increase in glomeruli compared with control transplants (n = 12). Conclusions: We have successfully established metanephros transplantation in mice and demonstrated enhancement of onward development of E12.5 metanephroi in response to both pregnancy and UNX. Using E15.5 metanephroi, continued development only occurred in pregnant recipients, implying pregnancy provides an environment conducive to continued organogenesis. This murine assay, when coupled with transgenically-tagged strains of mice, will allow the investigation of the relative contribution of donor and recipient cells to this process. Copyright (C) 2005 S. Karger AG, Basel.