22 resultados para ATR, IR-Spectroscopy, 2D-IR, Cytochrome c Oxidase, SEIRAS

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochromes from the SoxAX family have a major role in thiosulfate oxidation via the thiosulfate-oxidizing multi-enzyme system (TOMES). Previously characterized SoxAX proteins from Rhodovulum sulficlophilum and Paracoccus pantotrophus contain three heme c groups, two of which are located on the SoxA subunit. In contrast, the SoxAX protein purified from Starkeya novella was found to contain only two heme groups. Mass spectrometry showed that a disulfide bond replaced the second heme group found in the diheme SoxA subunits. Apparent molecular masses of 27,229 +/- 10.3 Da and 20,258.6 +/- 1 Da were determined for SoxA and SoxX with an overall mass of 49.7 kDa, indicating a heterodimeric structure. Optical redox potentiometry found that the two heme cofactors are reduced at similar potentials (versus NHE) that are as follows: + 133 mV (pH 6.0); + 104 mV (pH 7.0); +49 (pH 7.9) and +10 mV (pH 8.7). EPR spectroscopy revealed that both ferric heme groups are in the low spin state, and the spectra were consistent with one heme having a His/Cys axial ligation and the other having a His/Met axial ligation. The His/Cys ligated heme is present in different conformational states and gives rise to three distinct signals. Amino acid sequencing was used to unambiguously assign the protein to the encoding genes, soxAX, which are part of a complete sox gene cluster found in S. novella. Phylogenetic analysis of soxA- and soxX-related gene sequences indicates a parallel development of SoxA and SoxY, with the diheme and monoheme SoxA sequences located on clearly separated branches of a phylogenetic tree.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome c biogenesis in Escherichia coli is a complex process requiring at least eight genes (ccmABC DEFGH). One of these genes, ccmG, encodes a thioredoxin-like protein with unusually specific redox activity. Here, we investigate the basis for CcmG function and demonstrate the importance of acidic residues surrounding the redox-active center.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A yeast cDNA expression library was screened to identify genes and cellular processes that influence fungal sensitivity to a plant antimicrobial peptide. A plasmid-based, GAL1 promoter-driven yeast cDNA expression library was introduced into a yeast genotype susceptible to the antimicrobial peptide MiAMP1 purified from Macadamia integrifolia. Following a screen of 20,000 cDNAs, three yeast cDNAs were identified that reproducibly provided transformants with galactose-dependent resistance to MiAMP1. These cDNAs encoded a protein of unknown function, a component (VMA11) of the vacuolar H+-ATPase and a component (cytochrome c oxidase subunit VIa) of the mitochondrial electron transport chain, respectively. To identify genes that increased sensitivity to MiAMP1, the yeast cDNA expression library was introduced into a yeast mutant with increased resistance to MiAMP1. From 11,000 cDNAs screened, two cDNA clones corresponding to a ser/thr kinase and a ser/thr phosphatase reproducibly increased MiAMP1 susceptibility in the mutant in a galactose-dependent manner. Deletion mutants were available for three of the five genes identified but showed no change in their sensitivity to MiAMP1, indicating that these genes could not be detected by screening of yeast deletion mutant libraries. Yeast cDNA expression library screening therefore provides an alternative approach to gene deletion libraries to identify genes that can influence the sensitivity of fungi to plant antimicrobial peptides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neisseria gonorrhoeae is a host-adapted pathogen that colonizes primarily the human genitourinary tract. This bacterium encounters reactive oxygen and reactive nitrogen species as a consequence of localized inflammatory responses in the urethra of males and endocervix of females and also of the activity of commensal lactobacilli in the vaginal flora. This review describes recent advances in the understanding of defense systems against oxidative stress in N. gonorrhoeae and shows that while some of its defenses have similarities to the paradigm established with Escherichia coli, there are also some key differences. These differences include the presence of a defense system against superoxide based on manganese ions and a glutathione-dependent system for defense against nitric oxide which is under the control of a novel MerR-like transcriptional regulator. An understanding of the defenses against oxidative stress in N. gonorrhoeae and their regulation may provide new insights into the ways in which this bacterium survives challenges from polymorphonuclear leukocytes and urogenital epithelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Allozyme and molecular sequence data from the malaria vector Anopheles flavirostris (Ludlow) (Diptera: Culicidae) were analysed from 34 sites throughout the Philippines, including the type locality, to test the hypothesis that this taxon is a single panmictic species. A finer-scaled allozyme study, of mainly Luzon samples, revealed no fixed genetic differences in sympatric sites and only low levels of variation. We obtained data from partial sequences for the internal transcribed spacer 2 (ITS2) (483 bp), the third domain (D3) (330 bp) of the 28S ribosomal DNA subunit and cytochrome c oxidase subunit I (COI) of mitochondrial DNA (261 bp). No sequence variation was observed for ITS2, only a one base pair difference was observed between Philippine and Indonesian D3 sequences and An. flavirostris sequences were unique, confirming their diagnostic value for this taxon. Sixteen COI haplotypes were identified, giving 25 parsimony informative sites. Neighbour-Joining, Maximum Parsimony, Maximum Likelihood and Bayesian phylogenetic analysis of COI sequences for An. flavirostris and outgroup taxa revealed strong branch support for the monophyly of An. flavirostris, thus confirming that Philippine populations of this taxon comprise a single separate species within the Minimus Subgroup of the Funestus Group. Variation in the behaviour of An. flavirostris is likely to be intraspecific rather than interspecific in origin. © 2006 The Royal Entomological Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular interactions between microcrystalline cellulose (MCC) and water were investigated by attenuated total reflection infrared (ATR/IR) spectroscopy. Moisture-content-dependent IR spectra during a drying process of wet MCC were measured. In order to distinguish overlapping O–H stretching bands arising from both cellulose and water, principal component analysis (PCA) and, generalized two-dimensional correlation spectroscopy (2DCOS) and second derivative analysis were applied to the obtained spectra. Four typical drying stages were clearly separated by PCA, and spectral variations in each stage were analyzed by 2DCOS. In the drying time range of 0–41 min, a decrease in the broad band around 3390 cm−1 was observed, indicating that bulk water was evaporated. In the drying time range of 49–195 min, decreases in the bands at 3412, 3344 and 3286 cm−1 assigned to the O6H6cdots, three dots, centeredO3′ interchain hydrogen bonds (H-bonds), the O3H3cdots, three dots, centeredO5 intrachain H-bonds and the H-bonds in Iβ phase in MCC, respectively, were observed. The result of the second derivative analysis suggests that water molecules mainly interact with the O6H6cdots, three dots, centeredO3′ interchain H-bonds. Thus, the H-bonding network in MCC is stabilized by H-bonds between OH groups constructing O6H6cdots, three dots, centeredO3′ interchain H-bonds and water, and the removal of the water molecules induces changes in the H-bonding network in MCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfite-oxidizing molybdoenzymes convert the highly reactive and therefore toxic sulfite to sulfate and have been identified in insects, animals, plants, and bacteria. Although the well studied enzymes from higher animals serve to detoxify sulfite that arises from the catabolism of sulfur-containing amino acids, the bacterial enzymes have a central role in converting sulfite formed during dissimilatory oxidation of reduced sulfur compounds. Here we describe the structure of the Starkeya novella sulfite dehydrogenase, a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit, that reveals the molecular mechanism of intramolecular electron transfer in sulfite-oxidizing enzymes. The close approach of the two redox centers in the protein complex (Mo-Fe distance 16.6 angstrom) allows for rapid electron transfer via tunnelling or aided by the protein environment. The high resolution structure of the complex has allowed the identification of potential through-bond pathways for electron transfer including a direct link via Arg-55A and/or an aromatic-mediated pathway. A potential site of electron transfer to an external acceptor cytochrome c was also identified on the SorB subunit on the opposite side to the interaction with the catalytic SorA subunit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variable-frequency pulsed electron paramagnetic resonance studies of the molybdenum(V) center of sulfite dehydrogenase (SDH) clearly show couplings from nearby exchangeable protons that are assigned to a (MoOHn)-O-v group. The hyperfine parameters for these exchangeable protons of SDH are the same at both low and high pH and similar to those for the high-pH forms of sulfite oxidases (SOs) from eukaryotes. The SDH proton parameters are distinctly different from the low-pH forms of chicken and human so.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidoreductase enzymes catalyze single- or multi-electron reduction/oxidation reactions of small molecule inorganic or organic substrates, and they are integral to a wide variety of biological processes including respiration, energy production, biosynthesis, metabolism, and detoxification. All redox enzymes require a natural redox partner such as an electron-transfer protein ( e. g. cytochrome, ferredoxin, flavoprotein) or a small molecule cosubstrate ( e. g. NAD(P)H, dioxygen) to sustain catalysis, in effect to balance the substrate/product redox half-reaction. In principle, the natural electron-transfer partner may be replaced by an electrochemical working electrode. One of the great strengths of this approach is that the rate of catalysis ( equivalent to the observed electrochemical current) may be probed as a function of applied potential through linear sweep and cyclic voltammetry, and insight to the overall catalytic mechanism may be gained by a systematic electrochemical study coupled with theoretical analysis. In this review, the various approaches to enzyme electrochemistry will be discussed, including direct and indirect ( mediated) experiments, and a brief coverage of the theory relevant to these techniques will be presented. The importance of immobilizing enzymes on the electrode surface will be presented and the variety of ways that this may be done will be reviewed. The importance of chemical modification of the electrode surface in ensuring an environment conducive to a stable and active enzyme capable of functioning natively will be illustrated. Fundamental research into electrochemically driven enzyme catalysis has led to some remarkable practical applications. The glucose oxidase enzyme electrode is a spectacularly successful application of enzyme electrochemistry. Biosensors based on this technology are used worldwide by sufferers of diabetes to provide rapid and accurate analysis of blood glucose concentrations. Other applications of enzyme electrochemistry are in the sensing of macromolecular complexation events such as antigen - antibody binding and DNA hybridization. The review will include a selection of enzymes that have been successfully investigated by electrochemistry and, where appropriate, discuss their development towards practical biotechnological applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report the results of molybdenum K-edge X-ray absorption studies performed on the oxidized and reduced active sites of the sulfite dehydrogenase from Starkeya novella. Our results provide the first direct structural information on the active site of the oxidized form of this enzyme and confirm the conclusions derived from protein crystallography that the molybdenum coordination is analogous to that of the sulfite oxidases. The molybdenum atom of the oxidized enzyme is bound by two Mo=O ligands at 1.73 angstrom and three thiolate Mo-S ligands at 2.42 angstrom, whereas the reduced enzyme has one oxo at 1.74 angstrom, one long oxygen at 2.19 angstrom (characteristic of Mo-OH2), and three Mo-S ligands at 2.40 angstrom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystals of purified heterodimeric sulfite dehydrogenase from Starkeya novella have been grown using vapour diffusion. X-ray diffraction data have been collected from crystals of the native protein at lambda=1.0 Angstrom and close to the iron absorption edge at lambda=1.737 Angstrom. The crystals belong to space group P2(1)2(1)2, with unit-cell parameters a=97.5, b=92.5, c=55.9 Angstrom. Native data have been recorded to 1.8 Angstrom resolution and Fe-edge data to 2.5 Angstrom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of cigarette smoking and exposure to dietary cadmium (Cd) and lead (Pb) on urinary biomarkers of renal function and phenotypic variability of cytochrome P450 2A6 (CYP2A6) were investigated in a group of 96 healthy Thai men with mean age of 36.7 year (19-57 years). In non-smokers, Cd burden increased with age (r = 0.47, P < 0.001). In current smokers, Cd burden increased with both age (r = 0.45, P = 0.01) and number of cigarettes smoked per day (r = 0.32, P = 0.05). Cd-linked renal tubular dysfunction was seen in both smokers and non-smokers, but Pb-linked glomerular dysfunction was seen in smokers only, possibly due to more recent exposure to high levels of Cd and Pb, as reflected by 30-50% higher serum Cd and Pb levels in smokers than non-smokers (P < 0.05). Exposure to dietary Cd and Pb appeared to be associated with mild tubular dysfunction whereas dietary exposure plus cigarette smoking was associated with tubular plus glomerular dysfunction. Hepatic CYP2A6 activity in non-smokers showed a positive association with Cd burden (adjusted P = 0.38, P = 0.006), but it showed an inverse correlation with Pb (adjusted beta = -0.29, P = 0.003), suggesting opposing effects of Cd and Pb on hepatic CYP2A6 phenotype. In contrast, CYP2A6 activity in current smokers did not correlate with Cd or Pb, but it showed a positive correlation with serum ferritin levels (r = 0.45, P = 0.01). These finding suggest that Pb concentrations in the liver probably were too low to inhibit hepatic synthesis of heme and CYP2A6 and that the concurrent induction of hepatic CYP2A6 and ferritin was probably due to cigarette smoke constituents other than the Cd and Pb. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the interrelationships between phenotype of hepatic cytochrome P450 2A6 (CYP2A6), nephropathy, and exposure to cadmium and lead in a group of 118 healthy Thai men and women who had never smoked. Their urinary Cd excretion ranged from 0.05 to 2.36 mug/g creatinine, whereas their urinary Pb excretion ranged from 0.1 to 12 mug/g creatinine. Average age and Cd burden of women and men did not differ. Women, however, on average showed a 46% higher urinary Pb excretion (p < 0.001) and lower zinc status, suggested by lower average serum Zn and urinary Zn excretion compared with those in men. Cd-linked nephropathy was detected in both men and women. However, Pb-linked nephropathy was seen only in women, possibly because of higher Pb burden coupled with lower protective factors, notably of Zn (P < 0.001), in women compared with men. In men, Pb burden showed a negative association with CYP2A6 activity (adjusted beta = -0.29, p = 0.003), whereas Cd burden showed a positive association with CYP2A6 activity (adjusted beta = 0.38, p = 0.001), suggesting opposing effects of Cd and Pb on hepatic CYP2A6 phenotype. The weaker correlation between Cd burden CYP2A6 activity in women despite similarity in Cd burden between men and women is consistent with opposing effects of Pb and Cd on hepatic CYP2A6 phenotypic expression. A positive correlation between Cd-linked nephropathy (urinary N-acetyl-beta-D-glucosaminidase excretion) and CYP2A6 activity in men (r = 0.39, p = 0.002) and women (r = 0.37, p = 0.001) suggests that Cd induction of hepatic CYP2A6 expression and Cd-linked nephropathy occurred simultaneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiheme SoxAX proteins are notable for their unusual heme ligation (His/Cys-persulfide in the SoxA subunit) and the complexity of their EPR spectra. The diheme SoxAX protein from Starkeya novella has been expressed using Rhodobacter capsulatus as a host expression system. rSoxAX was correctly formed in the periplasm of the host and contained heme c in similar amounts as the native SoxAX. ESI-MS showed that the full length rSoxA, in spite of never having undergone catalytic turnover, existed in several forms, with the two major forms having masses of 28 687 +/- 4 and 28 718 +/- 4 Da. The latter form exceeds the expected mass of rSoxA by 31 4 Da, a mass close to that of a sulfur atom and indicating that a fraction of the recombinant protein contains a cysteine persulfide modification. EPR spectra of rSoxAX contained all four heme-dependent EPR signals (LS1a, LS1b, LS2, LS3) found in the native SoxAX proteins isolated from bacteria grown under sulfur chemolithotrophic conditions. Exposure of the recombinant SoxAX to different sulfur compounds lead to changes in the SoxA mass profile as determined by ESI while maintaining a fully oxidized SoxAX visible spectrum. Thiosulfate, the proposed SoxAX substrate, did not cause any mass changes while after exposure to dimethylsulfoxide a + 112 +/- 4 Da form of SoxA became dominant in the mass spectrum. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation and characterization of a series of trinuclear mixed-valence cyano-bridged Co-III-Fe-II-Co-III compounds derived from known dinuclear [{LnCoIII(mu-NC)}Fe-II(CN)(5)](-) complexes (L-n = N-5 or N3S2 n-membered pendant amine macrocycle) are presented. All of the new trinuclear complexes were fully characterized spectroscopically (UV-vis, IR, and C-13 NMR). Complexes exhibiting a trans and cis arrangement of the Co-Fe-Co units around the [Fe(CN)(6)](4-) center are described (i.e., cis/trans-[{LnCoIII(mu-NC)}(2)Fe-II(CN)(4)](2+)), and some of their structures are determined by X-ray crystallography. Electrochemical experiments revealed an expected anodic shift of the Fe-III/II redox potential upon addition of a tripositively charged {(CoLn)-L-III} moiety. The Co-III/II redox potentials do not change greatly from the di- to the trinuclear complex, but rather behave in a fully independent and noncooperative way. In this respect, the energies and extinction coefficients of the MMCT bands agree with the formal existence of two mixed-valence Fe-II-CN-Co-III units per molecule. Solvatochromic experiments also indicated that the MMCT band of these compounds behaves as expected for a class II mixed-valence complex. Nevertheless, its extinction coefficient is dramatically increased upon increasing the solvent donor number.