43 resultados para ALUMINIUM COMPOUNDS
em University of Queensland eSpace - Australia
Resumo:
My involvement with Aboriginal people began in 1972 in my final year of architecture, when a small group of students were asked to advise on some Aboriginal building projects in Mt Isa and Cloncurry. This led to my Doctoral research and grew into the Aboriginal Environments Research Centre now well established at the university of Queensland. Although the personnel of this Centre have completed over 140 field trips in the last 20 years, it is a set of data collected largely from the first ten field trips in 1972-76 that will be presented in this paper.
Resumo:
Although monomeric Al species are often toxic in acidic soils, the effects of the aluminate ion (Al(OH)4-) on roots grown in alkaline media are still unclear. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of Al(OH)4- on root growth of mungbean (Vigna radiata L.). Root growth was reduced by 13 % after 3 d growth in solutions with an Al(OH)4- activity of 16 μM and no detectable polycationic Al (Al13). This decrease in root growth was associated with the formation of lesions on the root tips (due to the rupturing of the epidermal and outer cortical cells) and a slight limitation to root hair growth (particularly on the lateral roots). When roots displaying these symptoms were transferred to fresh Al(OH)4- solutions for a further 12 h, no root tip lesions were observed and root hair growth on the lateral roots improved. The symptoms were similar to those induced by Al13 at concentrations as low as 0.50 μM Al which are below the detection limit of the ferron method. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots.
Resumo:
Carbonaceous adsorbents were prepared by heat treatment of coal reject at 600 degrees C, after chemical treatment in HNO3, H2SO4, and NaOH at 25 and 75 degrees C. Pore structure characterization and the phenol adsorption capacities of the adsorbents showed that nitric acid pretreatment significantly enhanced the surface properties, consequently the adsorption capacities of the adsorbents. A number of samples were subsequently prepared by carbonizing coal reject at 600 degrees C, after pretreatment in HNO3 under various conditions. The acid concentration, residence time, and reaction temperature were varied to obtain adsorbents with various pore structures. The adsorption capacities of the derived adsorbents for phenol, p-nitrophenol, and benzene were measured to gain further insights into the pore structure evolution. Adsorption isotherms of phenol, p-nitrophenol, and p-chlorophenol on the best adsorbent prepared were determined and correlated with theoretical isotherm equations, such as the Langmuir, Freundlich, and Redlich-Peterson equations.
Resumo:
Freeform fabrication methods allow the direct formation of parts built layer by layer, under the control of a CAD drawing. Most of these methods form parts in thermoplastic or thermoset polymers, but there would be many applications for freeform fabrication of fully functional metal or ceramic parts. We describe here the freeforming of sinterable aluminium alloys. In addition, the building approach allows different materials to be positioned within a monolithic part for an optimal combination of properties. This is illustrated here with the formation of an aluminium gear with a metal-matrix composite wear surface. (C) 1999 Kluwer Academic Publishers.
Resumo:
A magnesium-aluminium alloy of eutectic composition was solidified under two different cooling conditions, producing a low and a high growth rate of the eutectic solid-liquid interface. The high growth rate specimen contained smaller eutectic grains and cells, with a smaller interphase spacing compared with the low growth rate specimen. The high growth rate specimen also contained some primary Mg17Al12 dendrites, suggesting that the coupled zone is skewed towards the Mg phase with increased undercooling, A lamellar eutectic morphology was observed in the low growth rate specimen, while the morphology was fibrous in the high growth rate specimen.
Resumo:
Hypoeutectic AI-Si alloys represent the most widely used alloy system for cast aluminium applications. This system has a unique behaviour with respect to grain formation where an increase in silicon content results in a transition to larger grain sizes after a minimum at an intermediate concentration. As a result of the already large solute content, grain refinement by solute additions is inefficient and nucleant particles from the common aluminium grain refiners are not as effective as in wrought alloys. However, casting conditions, such as a low pouring temperature, that promote the formation of wall crystals tie. crystals nucleated in the thermally undercooled layer at or next to mould walls) are very effective in yielding a small grain size. This paper presents results of an investigation of the effect of low superheat and mould preheat temperature on grain size. It was found that pouring temperature controls the effectiveness of the wall mechanism while mould preheat has little effect until high preheat temperatures at which a large increase in grain size occurs. The observed changes in grain size are explained in terms of the balance between nucleation rate and survival rate of crystal nuclei resulting from changes in superheat and mould temperature.
Resumo:
The modified fatty acids, (Z,Z,Z)-(octadeca-6,9,12-trienyloxy)acetic acid, (Z,Z,Z)-(octadeca-9,12,15-trienyloxy)acetic acid, (all-Z)-(eicosa-5,8,11,14-tetraenyloxy)acetic acid, (all-Z)-(eicosa-5,8,11,14-tetraenylthio)acetic acid, 3-[(all-Z)-(eicosa-5,8,11,14-tetraenylthio)]propionic acid, (all-Z)-(eicosa-5,8,11,14-tetraenylthio)succinic acid, N-[(all-Z)-(eicosa-5,8,11,14-tetraenoyl)]glycine and N-[(all-Z)-(eicosa-5,8,11,14-tetraenoyl)]aspartic acid, all react with soybean 15-lipoxygenase. The products were treated with triphenylphosphine to give alcohols, which were isolated using HPLC. Analysis of the alcohols using negative ion tandem electrospray mass spectrometry, and by comparison with compounds obtained by autoxidation of arachidonic acid, shows that each enzyme catalysed oxidation occurs at the omega -6 position of the substrate. In a similar fashion, it has been found that (Z,Z,Z)-(octadeca-6,9,12-trienyloxy)acetic acid, (Z,Z,Z)-(octadeca-9,12,15-trienyloxy)acetic acid, (all-Z)-(eicosa-5,8,11,14-tetraenylthio)acetic acid and N-[(all-Z)-(eicosa-5,8, 11.14-tetraenylthio)]propionic acid each undergoes regioselective oxidation at the carboxyl end of the polyene moiety on treatment with potato 5-lipoxygenase. Neither (all-Z)-(eicosa-5,8,11,14-tetraenylthio)succinic acid nor N-[(all-Z)-(eicosa-5,8,11,14-tetraenoyl)]aspartic acid reacts in the presence of this enzyme, while N-[(all-Z)-(eicosa-5,8,11,14-tetraenoyl)]glycine affords the C11' oxidation product. The alcohol derived from (Z,Z,Z)-(octadeca-6,9, 12-trienyloxy)acetic acid using the 15-lipoxygenase reacts at the C6' position with the 5-lipoxygenase. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Mesoporous MCM-41 silica immobilized aluminium chloride shows high catalytic activity and selectivity in the Friedel-Crafts alkylation of naphthalene with isopropanol.
Resumo:
Partially solid commercial Al-Si and Mg-Al alloys have been deformed in shear during solidification using vane rheometry. The dendritic mush was deformed for a short period at 29% solid and allowed to cool naturally after deformation. Both alloys exhibited yield point behaviour and deformation was highly localised at the surface of maximum shear stress. The short period of deformation was found to have a distinct impact on the as-cast microstructure leading to fragmented dendrites in the deformation region of both alloys. In the case of the Mg-Al alloy, a concentrated region of interdendritic porosity was also observed in the deformation region. Concentrated porosity was not observed in the Al-Si alloy. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Vertical direct chill (VDC) casting of aluminium alloys is a mature process that has evolved over many decades through gradual change to both equipment design and casting practice. Today, air-pressurised, continuous lubrication, hot top mould systems with advanced station automation are selected as the process of choice for producing extrusion billet. Specific sets of operating parameters are employed on these stations for each alloy and size combination to produce optimal billet quality. The designs and parameters are largely derived from past experience and accumulated know-how. Recent experimental work at the University of Queensland has concentrated on understanding the way in which the surface properties of liquid aluminium alloys, e.g., surface tension, wetting angle and oxide skin strength, influence the size and shape of the naturally-stab le meniscus for a given alloy, temperature and atmosphere. The wide range of alloy-and condition-dependent values measured has led to the consideration of how these properties impact the stability of the enforced molten metal meniscus within the hot top mould cavity. The actual shape and position of the enforced meniscus is controlled by parameters such as the upstream conduction distance (UCD) from sub-mould cooling and the molten metal head. The degree of deviation of this actual meniscus from the predicted stable meniscus is considered to be a key driver in surface defect formation. This paper reports on liquid alloy property results and proposes how this knowledge might be used to better design VDC mould systems and casting practices.