175 resultados para AIR-FLOW LIMITATION
em University of Queensland eSpace - Australia
Resumo:
Arriving in Brisbane some six years ago, I could not help being impressed by what may be prosaically described as its atmospheric amenity resources. Perhaps this in part was due to my recent experiences in major urban centres in North America, but since that time, that sparkling quality and the blue skies seem to have progressively diminished. Unfortunately, there is also objective evidence available to suggest that this apparent deterioration is not merely the result of habituation of the senses. Air pollution data for the city show trends of increasing concentrations of those very substances that have destroyed the attractiveness of major population centres elsewhere, with climates initially as salubrious. Indeed, present figures indicate that photochemical smog in unacceptably high concentrations is rapidly becoming endemic also over Brisbane. These regrettable developments should come as no surprise. The society at large has not been inclined to respond purposefully to warnings of impending environmental problems, despite the experiences and publicity from overseas and even from other cities within Australia. Nor, up to the present, have certain politicians and government officials displayed stances beyond those necessary for the maintenance of a decorum of concern. At this stage, there still exists the possibility for meaningful government action without the embarrassment of losing political favour with the electorate. To the contrary, there is every chance that such action may be turned to advantage with increased public enlightenment. It would be more than a pity to miss perhaps the final remaining opportunity: Queensland is one of the few remaining places in the world with sufficient resources to permit both rational development and high environmental quality. The choice appears to be one of making a relatively minor investment now for a large financial and social gain the near future, or, permitting Brisbane to degenerate gradually into just another stagnated Los Angeles or Sydney. The present monograph attempts to introduce the problem by reviewing the available research on air quality in the Brisbane area. It also tries to elucidate some seemingly obvious, but so far unapplied management approaches. By necessity, such a broad treatment needs to make inroads into extensive ranges of subject areas, including political and legal practices to public perceptions, scientific measurement and statistical analysis to dynamics of air flow. Clearly, it does not pretend to be definitive in any of these fields, but it does try to emphasize those adjustable facets of the human use system of natural resources, too often neglected in favour of air pollution control technology. The crossing of disciplinary boundaries, however, needs no apology: air quality problems are ubiquitous, touching upon space, time and human interaction.
Resumo:
The development of large-scale solid-stale fermentation (SSF) processes is hampered by the lack of simple tools for the design of SSF bioreactors. The use of semifundamental mathematical models to design and operate SSF bioreactors can be complex. In this work, dimensionless design factors are used to predict the effects of scale and of operational variables on the performance of rotating drum bioreactors. The dimensionless design factor (DDF) is a ratio of the rate of heat generation to the rate of heat removal at the time of peak heat production. It can be used to predict maximum temperatures reached within the substrate bed for given operational variables. Alternatively, given the maximum temperature that can be tolerated during the fermentation, it can be used to explore the combinations of operating variables that prevent that temperature from being exceeded. Comparison of the predictions of the DDF approach with literature data for operation of rotating drums suggests that the DDF is a useful tool. The DDF approach was used to explore the consequences of three scale-up strategies on the required air flow rates and maximum temperatures achieved in the substrate bed as the bioreactor size was increased on the basis of geometric similarity. The first of these strategies was to maintain the superficial flow rate of the process air through the drum constant. The second was to maintain the ratio of volumes of air per volume of bioreactor constant. The third strategy was to adjust the air flow rate with increase in scale in such a manner as to maintain constant the maximum temperature attained in the substrate bed during the fermentation. (C) 2000 John Wiley & Sons, Inc.
Resumo:
This paper proposes an integrated methodology for modelling froth zone performance in batch and continuously operated laboratory flotation cells. The methodology is based on a semi-empirical approach which relates the overall flotation rate constant to the froth depth (FD) in the flotation cell; from this relationship, a froth zone recovery (R,) can be extracted. Froth zone recovery, in turn, may be related to the froth retention time (FRT), defined as the ratio of froth volume to the volumetric flow rate of concentrate from the cell. An expansion of this relationship to account for particles recovered both by true flotation and entrainment provides a simple model that may be used to predict the froth performance in continuous tests from the results of laboratory batch experiments. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
A literature review has highlighted the need to measure flotation froth rheology in order to fully characterise the role of the froth in the flotation process. The initial investigation using a coaxial cylinder viscometer for froth rheology measurement led to the development of a new device employing a vane measuring head. The modified rheometer was used in industrial scale flotation tests at Mt. Isa Copper Concentrator. The measured froth rheograms show a non-Newtonian nature for the flotation froths (pseudoplastic flow). The evidence of the non-Newtonian flow has questioned the validity of application of the Laplace equation in froth motion modelling as used by a number of researchers, since the assumption of irrotational flow is violated. Correlations between the froth rheology and the froth retention time, water hold-up in the froth and concentrate grades have been found. These correlations are independent of air flow rate (test data at various air flow rates fall on one similar trend line). This implies that froth rheology may be used as a lumped parameter for other operating variables in flotation modelling and scale up. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Chest clapping, vibration, and shaking were studied in 10 physiotherapists who applied these techniques on an anesthetized animal model. Hemodynamic variables (such as heart rate, blood pressure, pulmonary artery pressure, and right atrial pressure) were measured during the application of these techniques to verify claims of adverse events. In addition, expired tidal volume and peak expiratory flow rate were measured to ascertain effects of these techniques. Physiotherapists in this study applied chest clapping at a rate of 6.2 +/- 0.9 Hz, vibration at 10.5 +/- 2.3 Hz, and shaking at 6.2 +/- 2.3 Hz. With the use of these rates, esophageal pressure swings of 8.8 +/- 5.0, 0.7 +/- 0.3, and 1.4 +/- 0.7 mmHg resulted from clapping, vibration, and shaking respectively. Variability in rates and forces generated by these techniques was 80% of variance in shaking force (P = 0.003). Application of these techniques by physiotherapists was found to have no significant effects on hemodynamic and most ventilatory variables in this study. From this study, we conclude that chest clapping, vibration, and shaking 1) can be consistently performed by physiotherapists; 2) are significantly related to physiotherapists' characteristics, particularly clinical experience; and 3) caused no significant hemodynamic effects.
Resumo:
Skin-friction measurements are reported for high-enthalpy and high-Mach-number laminar, transitional and turbulent boundary layers. The measurements were performed in a free-piston shock tunnel with air-flow Mach number, stagnation enthalpy and Reynolds numbers in the ranges of 4.4-6.7, 3-13 MJ kg(-1) and 0.16 x 10(6)-21 x 10(6), respectively. Wall temperatures were near 300 K and this resulted in ratios of wall enthalpy to flow-stagnation enthalpy in the range of 0.1-0.02. The experiments were performed using rectangular ducts. The measurements were accomplished using a new skin-friction gauge that was developed for impulse facility testing. The gauge was an acceleration compensated piezoelectric transducer and had a lowest natural frequency near 40 kHz. Turbulent skin-friction levels were measured to within a typical uncertainty of +/-7%. The systematic uncertainty in measured skin-friction coefficient was high for the tested laminar conditions; however, to within experimental uncertainty, the skin-friction and heat-transfer measurements were in agreement with the laminar theory of van Driest (1952). For predicting turbulent skin-friction coefficient, it was established that, for the range of Mach numbers and Reynolds numbers of the experiments, with cold walls and boundary layers approaching the turbulent equilibrium state, the Spalding & Chi (1964) method was the most suitable of the theories tested. It was also established that if the heat transfer rate to the wall is to be predicted, then the Spalding & Chi (1964) method should be used in conjunction with a Reynolds analogy factor near unity. If more accurate results are required, then an experimentally observed relationship between the Reynolds analogy factor and the skin-friction coefficient may be applied.
Resumo:
Oil shale processing produces an aqueous wastewater stream known as retort water. The fate of the organic content of retort water from the Stuart oil shale project (Gladstone, Queensland) is examined in a proposed packed bed treatment system consisting of a 1:1 mixture of residual shale from the retorting process and mining overburden. The retort water had a neutral pH and an average unfiltered TOC of 2,900 mg l(-1). The inorganic composition of the retort water was dominated by NH4+. Only 40% of the total organic carbon (TOC) in the retort water was identifiable, and this was dominated by carboxylic acids. In addition to monitoring influent and effluent TOC concentrations, CO2 evolution was monitored on line by continuous measurements of headspace concentrations and air flow rates. The column was run for 64 days before it blocked and was dismantled for analysis. Over 98% of the TOC was removed from the retort water. Respirometry measurements were confounded by CO2 production from inorganic sources. Based on predictions with the chemical equilibrium package PHREEQE, approximately 15% of the total CO2 production arose from the reaction of NH4+ with carbonates. The balance of the CO2 production accounted for at least 80% of the carbon removed from the retort water. Direct measurements of solid organic carbon showed that approximately 20% of the influent carbon was held-up in the top 20cm of the column. Less than 20% of this held-up carbon was present as either biomass or as adsorbed species. Therefore, the column was ultimately blocked by either extracellular polymeric substances or by a sludge that had precipitated out of the retort water.
Resumo:
For nearly 100 years, the flotation plant metallurgist has often wondered what is happening 'beneath the froth'. To assist in unravelling this mystery, new technology has been developed as part of the Australian Mineral Industries Research Association (AMIRA) P9 project, to measure gas dispersion characteristics (such as gas hold-up, superficial gas velocity and bubble size) in industrial flotation cells. These measurements have been conducted in a large number of cells of different types and sizes by researchers from the Julius Kruttschnitt Mineral Research Centre (JKMRC) and JKTech. A large database has been developed and the contents of this database are described in this paper. Typical cell characterization measurements show a wide spread in values, even in the same cell types and sizes performing similar duties. In conventional flotation cells, the typical gas hold-up values range from 3% to 20%, bubble sizes range between I and 2 mm, and superficial gas velocity ranges from 1 to 2.5 cm/s. The ranges of cell characterization measurements given in this paper will enable plant personnel to compare their operation to other similar types of operations from around Australia and the rest of the world, giving opportunities for further improvement to flotation plant operations. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To compare the incidence of ventilator-associated pneumonia (VAP) in patients ventilated in intensive care by means of circuits humidified with a hygroscopic heat-and-moisture exchanger with a bacterial viral filter (HME) or hot-water humidification with a heater wire in both inspiratory and expiratory circuit limbs (DHW) or the inspiratory limb only (SHW). Design: A prospective, randomized trial. Setting: A metropolitan teaching hospital's general intensive care unit. Patients: Three hundred eighty-one patients requiring a minimum period of mechanical ventilation of 48 hrs. Interventions: Patients were randomized to humidification with use of an HME (n = 190), SHW (n = 94), or DHW (n = 97). Measurements and Main Results. Study end points were VAP diagnosed on the basis of Clinical Pulmonary Infection Score (CPIS) (1), HME resistance after 24 hrs of use, endotracheal tube resistance, and HME use per patient. VAP occurred with similar frequency in all groups (13%, HME; 14%, DHW; 10%, SHW; p = 0.61) and was predicted only by current smoking (adjusted odds ratio [AOR], 2.1; 95% confidence interval [CI], 1.1-3.9; p =.03) and ventilation days (AOR, 1.05; 95% Cl, 1.0-1.2; p =.001); VAP was less likely for patients with an admission diagnosis of pneumonia (AOR, 0.40; 95% Cl, 0.4-0.2; p =.04). HME resistance after 24 hrs of use measured at a gas flow of 50 L/min was 0.9 cm H2O (0.4-2.9). Endotracheal tube resistance was similar for all three groups (16-19 cm H2O min/L; p =.2), as were suction frequency, secretion thickness, and blood on suctioning (p =.32, p =.06, and p =.34, respectively). The HME use per patient per day was 1.13. Conclusions: Humidification technique does not influence either VAP incidence or secretion characteristics, but HMEs may have air-flow resistance higher than manufacturer specifications after 24 hrs of use.
Resumo:
Measurements of mean and fluctuating velocity and temperature and their self- and cross-products to the third-order are presented for a heated axisymmetric air jet. Froude numbers in the range of 3500 13,190, Reynolds numbers in the range of 3470-8500 and non-dimensional streamwise distances. X*, from 0.27 to 1.98 are covered by the data. It was found that turbulence intensity decreases for the heated jet in the region between the inertia dominated and the buoyancy dominated regions which is contrary to findings with helium jets mixing with ambient air to produce density fluctuations. The effects of heating on the turbulent kinetic energy budget and the temperature variance budget show small differences for the inertia dominated region and the intermediate region which help to explain the transition process to the far field plume region. Constants are evaluated for the isotropic eddy diffusivity and generalised gradient hypothesis models as well as the scalar variance model. No significant effect of heating on the dissipation time-scale ratio was found. A novel wire array with an inclined cold wire was used. Measurements obtained with this probe are found to lead to asymmetries in some of the higher-order products. Further investigation suggested that the asymmetries are attributable to an as yet unreported interference effect produced by the leading prong of the inclined temperature wire, The effect may also have implications for inclined velocity wires which contain a temperature component when used in heated flows. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Interactions between turbulent waters and atmosphere may lead to strong air-water mixing. This experimental study is focused on the flow down a staircase channel characterised by very strong flow aeration and turbulence. Interfacial aeration is characterised by strong air-water mixing extending down to the invert. The size of entrained bubbles and droplets extends over several orders of magnitude, and a significant number of bubble/droplet clusters was observed. Velocity and turbulence intensity measurements suggest high levels of turbulence across the entire air-water flow. The increase in turbulence levels, compared to single-phase flow situations, is proportional to the number of entrained particles. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents a comparative study how reactor configuration, sludge loading and air flowrate affect flow regimes, hydrodynamics, floc size distribution and sludge solids-liquid separation properties. Three reactor configurations were studied in bench scale activated sludge bubble column reactor (BCR), air-lift reactor (ALR) and aerated stirred reactor (ASR). The ASR demonstrated the highest capacity of gas holdup and resistance, and homogeneity in flow regimes and shearing forces, resulting in producing large numbers of small and compact floes. The fluid dynamics in the ALR created regularly directed recirculation forces to enhance the gas holdup and sludge flocculation. The BCR distributed a high turbulent flow regime and non-homogeneity in gas holdup and mixing, and generated large numbers of larger and looser floes. The sludge size distributions, compressibility and settleability were significantly influenced by the reactor configurations associated with the flow regimes and hydrodynamics.
Resumo:
Rectangular dropshafts, commonly used in sewers and storm water systems, are characterised by significant flow aeration. New detailed air-water flow measurements were conducted in a near-full-scale dropshaft at large discharges. In the shaft pool and outflow channel, the results demonstrated the complexity of different competitive air entrainment mechanisms. Bubble size measurements showed a broad range of entrained bubble sizes. Analysis of streamwise distributions of bubbles suggested further some clustering process in the bubbly flow although, in the outflow channel, bubble chords were in average smaller than in the shaft pool. A robust hydrophone was tested to measure bubble acoustic spectra and to assess its field application potential. The acoustic results characterised accurately the order of magnitude of entrained bubble sizes, but the transformation from acoustic frequencies to bubble radii did not predict correctly the probability distribution functions of bubble sizes.
Resumo:
In an open channel, a hydraulic jump is the rapid transition from super- to sub-critical flow associated with strong turbulence and air bubble entrainment in the mixing layer. New experiments were performed at relatively large Reynolds numbers using phase-detection probes. Some new signal analysis provided characteristic air-water time and length scales of the vortical structures advecting the air bubbles in the developing shear flow. An analysis of the longitudinal air-water flow structure suggested little bubble clustering in the mixing layer, although an interparticle arrival time analysis showed some preferential bubble clustering for small bubbles with chord times below 3 ms. Correlation analyses yielded longitudinal air-water time scales Txx*V1/d1 of about 0.8 in average. The transverse integral length scale Z/d1 of the eddies advecting entrained bubbles was typically between 0.25 and 0.4, irrespective of the inflow conditions within the range of the investigations. Overall the findings highlighted the complicated nature of the air-water flow
Resumo:
A hydraulic jump is characterized by strong energy dissipation and mixing, large-scale turbulence, air entrainment, waves and spray. Despite recent pertinent studies, the interaction between air bubbles diffusion and momentum transfer is not completely understood. The objective of this paper is to present experimental results from new measurements performed in rectangular horizontal flume with partially-developed inflow conditions. The vertical distributions of void fraction and air bubbles count rate were recorded for inflow Froude number Fr1 in the range from 5.2 to 14.3. Rapid detrainment process was observed near the jump toe, whereas the structure of the air diffusion layer was clearly observed over longer distances. These new data were compared with previous data generally collected at lower Froude numbers. The comparison demonstrated that, at a fixed distance from the jump toe, the maximum void fraction Cmax increases with the increasing Fr1. The vertical locations of the maximum void fraction and bubble count rate were consistent with previous studies. Finally, an empirical correlation between the upper boundary of the air diffusion layer and the distance from the impingement point was provided.