7 resultados para 4,5-dihydroxy-1,3-benzène disulphonate
em University of Queensland eSpace - Australia
Resumo:
Tetrazolo[1,5-a] pyridines/ 2-azidopyridines 1 undergo photochemical nitrogen elimination and ring expansion to 1,3-diazacyclohepta-1,2,4,6-tetraenes 3, which react with alcohols to afford 2-alkoxy-1H-1,3-diazepines 4 (5), with secondary amines to 2-dialkylamino-5H-1,3-diazepines 16, sometimes via isolable 2-dialkylamino-1H-1,3-diazepines 15, and with water to 1,3-diazepin-2-ones 19. The latter are also obtained by elimination of isobutene or propene from 2-tert-butoxy- or 2-isopropoxy-1H-1,3-diazepines 4 or 5. 1,3-Diazepin-2-one 22B and 1,3-diazepin-4-one 24 were obtained from hydrolysis of the corresponding 4-chlorodiazepines. Diazepinones 19 undergo photochemical ring closure to diazabicycloheptenones 25 in high yields. The 2-alkoxy-1H-1,3-diazepines 4 and 5 interconvert by rapid proton exchange between positions N1 and N3. The free energies of activation for the proton exchange were measured by the Forsen - Hoffman method as DeltaGdouble dagger(298) = 16.2 +/- 0.6 kcal mol(-1) as an average for 4a - c in CD2Cl2, acetone-d(6), and methanol-d(4), and 14.1 +/- 0.6 kcal mol(-1) for 4c in acetone/D2O. The structures of 2-methoxy-5,6-bis( trifluoromethyl)-1H-1,3-diazepine 4k, 1,2-dihydro-4-diethylamino-5H-1,3-diazepin-2-one 22bB, and diazabicycloheptanone 26 were determined by X-ray crystallography. The former represents the first reported X-ray crystal structure of any monocyclic N-unsubstituted 1H-azepine.
Resumo:
A new approach to enantiomerically pure 2,8-dialkyl-1,7-dioxaspiro[5.5]undecanes and 2,7-dialkyl-1,6-dioxaspiro [4.5] decanes is described and utilizes enantiomerically pure homopropargylic alcohols obtained from lithium acetylide opening of enantiomerically pure epoxides, which are, in turn, acquired by hydrolytic kinetic resolution of the corresponding racemic epoxides. Alkyne carboxylation and conversion to the Weinreb amide may be followed by triple-bond manipulation prior to reaction with a second alkynyllithium derived from a homo- or propargylic alcohol. In this way, the two ring components of the spiroacetal are individually constructed, with deprotection and cyclization affording the spiroacetal. The procedure is illustrated by acquisition of (2S,5R,7S) and (2R,5R,7S)-2-n-butyl-7-methyl-1,6-dioxaspiro[4.5]-decanes (1), (2S,6R,8S)-2-methyl-8-n-pentyl-1,7-dioxaspiro[5.5]undecane (2), and (2S,6R,8S)-2-methyl-8-n-propyl-1,7-dioxaspiro[5.5]undecane (3). The widely distributed insect component, (2S,6R,8S)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane (4), was acquired by linking two identical alkyne precursors via ethyl formate. In addition, [H-2(4)]-regioisomers, 10,10,11,11-[H-2(4)] and 4,4,5,5-[H-2(4)] of 3 and 4,4,5,5-[H-2(4)]-4, were acquired by triple-bond deuteration, using deuterium gas and Wilkinson's catalyst. This alkyne-based approach is, in principle, applicable to more complex spiroacetal systems not only by use of more elaborate alkynes but also by triple-bond functionalization during the general sequence.
Resumo:
Several tetrazolo[1,5-a] pyridines/2-azidopyridines undergo photochemical nitrogen elimination and ring expansion to 1,3-diazacyclohepta-1,2,4,6-tetraenes (7,10,13,16,19,22) as well as ring cleavage to cyanovinylketenimines (8,17,20b) in low temperature Ar matrices. 6,8-Dichlorotetrazolo[1,5-a] pyridine/2-azido-3,5-dichloropridine 6 undergoes ready exchange of the chlorine in position 8 (3) with ROH/RONa. 8-Chloro-6-trifluoromethyltetrazolo[1,5-a] pyridine 15 undergoes solvolysis of the CF3 group to afford 8-chloro-6-methoxycarbonyltetrazolo[1,5-a] pyridine 18. Several tetrazolopyridines/2-azidopyridines afford 1H- or 5H-1,3-diazepines in good yields on photolysis in the presence of alcohols or amines (11,14,23,25). 5-Chlorotetrazolo[1,5-a] pyridines/2-azido-6-chloropyridines 21 and 38 undergo a rearrangement to 1H- and 3H-3-cyanopyrroles 27 and 45, respectively. The mechanism of this rearrangement was investigated by N-15-labelling and takes place via transient 1,3-diazepines. The structures of 6,8-dichloro-tetrazolo[1,5-a] pyridine 6T, 6-chloro-8-ethoxytetrazolo[1,5-a] pyridine 9Tb, dipyrrolylmethane 28, and 2-isopropoxy-4-dimethylamino-5H-1,3-diazepine 25b were determined by X-ray crystallography. In the latter case, this represents the first reported X-ray crystal structure of a 5H-1,3-diazepine.
Resumo:
Humulene-4,5-monoepoxide, 1, may rearrange to the cyclopropyl diol 2 during chromatography over silica. The rearrangement can be reversed with acid.
Resumo:
Dibenzoylketene 5 undergoes degenerate 1,3-shifts of the phenyl group between acyl and ketene carbon atoms, thus interconverting it with 6 and 7. This 1,3-shift takes place in the gas phase under flash vacuum thermolysis (FVT) conditions, but not in solution at 110-145 degrees C. Imidoyl(benzoyl)ketene 13 undergoes degenerate 1,3-shift of the phenyl group on FVT, thus interconverting it with 14, but the ketenimine isomer 15 is not formed, and none of these shifts take place in the solid state at 250 degrees C. Imidoyl(p-toluoyl)ketene 21 undergoes a 1,3-p-tolyl shift, interconverting it with ketene 22 but not with ketenimine 23. The imidoyl(p-toluoyl)ketene rotamer 25 cyclizes to 4-toluoyloxyquinoline 28 and 4-quinolone 29. The cyclization of imidoyl(benzoyl)ketene 13 to 4-benzoyloxyquinoline 18, and of 25 to 28 involves 1,3-C-to-O shifts of benzoyl (toluoyl) groups. Calculations of the transition states for the transformations at the B3LYP/6-31G** level of theory are in agreement with the observed reaction preferences.