46 resultados para 290102 Food Engineering

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of sticky behaviour of amorphous food powders has been recognized over many decades in the food industry due to its influence on process and handling abilities and quality of the powders. This paper emphasizes the role of stickiness in the food powder industry as well as reviews the stickiness characterization techniques developed to date. This paper also attempts to correlate the stickiness behaviour of food powders to the instrumental analysis such as glass transition temperature. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many food materials exist in a disordered amorphous solid state due to processing. Therefore, understanding the concept of amorphous state, its important phase transition (i.e., glass transition), and the related phenomena (e.g., enthalpy relaxation) is important to food scientists. Food saccharides, including mono-, di-, oligo-, and polysaccharides, are among the most important major components in food. Focusing on the food saccharides, this review covers important topics related to amorphous solids, including the concept and molecular arrangement of amorphous solid, the formation of amorphous food saccharides, the concept of glass transition and enthalpy relaxation, physical property changes and molecular mobility around the glass transition, measurement of the glass transition and enthalpy relaxation, their mathematical descriptions and models, and influences on food stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antibacterial activities of water, ethanol and hexane extracts of five Australian herbs (Backhousia citriodora, Anetholea anisata, Eucalyptus staigerana, Eu. olida and Prostanthera incisa) against seven food-related bacteria (Enterococcus faecalis, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Enteritidis, Sal. Typhimurium and Staphylococcus aureus) were determined by the microtitre broth microdilution assay. The water extracts of all the herbs displayed no or low antimicrobial activity against all of the bacteria tested with the exception of S. aureus. Relatively high levels of activity (minimum inhibitory concentrations of 125-15.6 mu g ml(-1)) against this pathogen were present in water extracts from all herbs except P. incisa. The ethanol and hexane extracts of all herbs displayed some activity against a number of the bacteria tested, with no one particular herb displaying an obviously higher level or range of activity. Staphylococcus aureus proved to be the most sensitive of the bacteria tested against the solvent extracts with all extracts displaying activity ranging from 125 to 7.8 mu g ml(-1), while E. coli and L. monocytogenes, on the other hand, proved the least sensitive with only five of 15 herb/extract combinations displaying any activity against these pathogens. The extracts of the Australian native herbs examined in this study have potential for application in foods to increase shelf-life or promote safety. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclone stickiness test (CST) technique was applied to measure the stickiness temperature and relative humidity of whey, honey, and apple juice powders. A moisture sorption isotherm study was conducted to analyze the surface moisture content of whey powder. The glass transition temperatures of the sample powder were analyzed using differential scanning calorimetry (DSC). The stickiness results of these products were found within 20 degrees C above their surface glass transition temperatures, which is well within the normal temperature range for glass transition in general. The results obtained by the CST technique were found consistent with DSC values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new Thermal Mechanical Compression Test (TMCT) was applied for glass-rubber transition and melting analyses of food powders and crystals. The TMCT technique measures the phase change of a material based on mechanical changes during the transition. Whey, honey, and apple juice powders were analyzed for their glass-rubber transition temperatures. Sucrose and glucose monohydrate crystals were analyzed for their melting temperatures. The results were compared to the values obtained by conventional DSC and TMA techniques. The new TMCT technique provided the results that were very close to the conventional techniques. This technique can be an alternative to analyze glass-rubber transition of food, pharmaceutical, and chemical dry products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic rheological behaviour of starch-honey systems was studied using a strain-controlled rheometer. A dynamic temperature (30-130 degreesC) ramp test was used at 10 rad s(-1) frequency, 1% strain, 2 degreesC min(-1) ramp rate, 25 mm parallel plate, and 1.5 min gap, using Wheaten cornflour(TM) and five honeys to generate 25 formulations (0.34-0.80 g water/g dry starch). G', G, and eta* increased upon gelatinisation, and they reduced as the honey content was increased. For all the formulations, G' was higher than G, and tan 6 was generally less than 1.0. Key gelatinisation characterising temperatures (onset, peak and end) ranged from 96.0 to 122.3 degreesC, but did not vary much (CV < 5%) for each honey irrespective of the concentration. The influence of water, fructose and glucose, singly and in combination, on gelatinisation indices (temperature and rheological parameters) was investigated. An exponential equation was employed to describe the relationship, and relevant parameters were obtained. The consequences of the observations in the study are discussed particularly as they relate to extrusion of such systems, and possible interactions between fructose and glucose in the starch-honey systems. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing interests in the use of starch as biodegradable plastic materials demand, amongst others, accurate information on thermal properties of starch systems particularly in the processing of thermoplastic starch (TPS), where plasticisers (water and glycerol) are added. The specific heat capacity of starch-water-glycerol mixtures was determined within a temperature range of 40-120degreesC. A modulated temperature differential scanning calorimeter (MTDSC) was employed and regression equations were obtained to predict the specific heat capacity as a function of temperature, water and glycerol content for four maize starches of differing amylose content (0 - 85%). Generally, temperature and water content are directly proportional to the specific heat capacity of the systems, but the influence of glycerol content on the thermal property varied according to the starch type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pumping characteristics of four Australian honey samples were investigated in a straight pipe. Six flow rates (100-500 kg h(-1)) were studied at three temperatures (35-50degreesC). The pressure loss increased with an increase in the length of the pipe, as the low rate was increased and as the temperature was reduced. In the 25.4 mm-pipe, the Reynolds number ranged from 0.2-32.0 and are substantially less than the critica value (2040-2180) for laminar condition in the system. The relationship between the wall shear stress and shear rate approximated power-law behaviour, and the power-law index was not significantly (p>0.05) different from 1.0. The honey samples exhibited Newtonian behaviour at all the temperatures and this was confirmed by rheometric studies using Couette geometry. A friction chart was generated independent of temperature and the type of honey. An equation was developed to predict the pressure loss of the honey in a typical pipeline at any temperature once the viscosity-temperature relationship had been established.