7 resultados para 111207 Molecular Targets

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human melanoma susceptibility is often characterized by germ-line inactivating CDKN2A (INK4A/ARF) mutations, or mutations that activate CDK4 by preventing its binding to and inhibition by INK4A. We have previously shown that a single neonatal UV radiation (UVR) dose delivered to mice that carry melanocyte-specific activation of Hras (TPras) increases melanoma penetrance from 0% to 57%. Here, we report that activated Cdk4 cooperates with activated Hras to enhance susceptibility to melanoma in mice. Whereas UVR treatment failed to induce melanomas in Cdk4(R24C/R24C) mice, it greatly increased the penetrance and decreased the age of onset of melanoma development in Cdk4(R24C/R24C)/TPras animals compared with TPras alone. This increased penetrance was dependent on the threshold of Cdk4 activation as Cdk4(R24C/+)/TPras animals did not show an increase in UVR-induced melanoma penetrance compared with TPras alone. In addition, Cdk4(R24C/R24C)/TPras mice invariably developed multiple lesions, which occurred rarely in TPras mice. These results indicate that germ-line defects abrogating the pRb pathway may enhance UVR-induced melanoma. TPras and Cdk4(R24C/R24C)/TPras tumors were comparable histopathologically but the latter were larger and more aggressive and cultured cells derived from such melanomas were also larger and had higher levels of nuclear atypia. Moreover, the melanomas in Cdk4(R24C/R24C)/TPras mice, but not in TPras mice, readily metastasized to regional lymph nodes. Thus, it seems that in the mouse, Hras activation initiates UVR-induced melanoma development whereas the cell cycle defect introduced by mutant Cdk4 contributes to tumor progression, producing more aggressive, metastatic tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The staggerer mice carry a deletion in the RORalpha gene and have a prolonged humoral response, overproduce inflammatory cytokines, and are immunodeficient. Furthermore, the staggerer mice display lowered plasma apoA-I/-II, decreased plasma high density lipoprotein cholesterol and triglycerides, and develop hypo-alpha-lipoproteinemia and atherosclerosis. However, relatively little is known about RORalpha in the context of target tissues, target genes, and lipid homeostasis. For example, RORalpha is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for similar to40% of total body weight and 50% of energy expenditure. This lean tissue is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. In particular, the role of RORalpha in skeletal muscle metabolism has not been investigated, and the contribution of skeletal muscle to the ROR-/- phenotype has not been resolved. We utilize ectopic dominant negative RORalpha expression in skeletal muscle cells to understand the regulatory role of RORs in this major mass peripheral tissue. Exogenous dominant negative RORalpha expression in skeletal muscle cells represses the endogenous levels of RORalpha and -gamma mRNAs and ROR-dependent gene expression. Moreover, we observed attenuated expression of many genes involved in lipid homeostasis. Furthermore, we show that the muscle carnitine palmitoyltransferase-1 and caveolin-3 promoters are directly regulated by ROR and coactivated by p300 and PGC-1. This study implicates RORs in the control of lipid homeostasis in skeletal muscle. In conclusion, we speculate that ROR agonists would increase fatty acid catabolism in muscle and suggest selective activators of ROR may have therapeutic utility in the treatment of obesity and atherosclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The glycine receptor chloride channel (GlyR) is a member of the nicotinic acetylcholine receptor family of ligand-gated ion channels. Functional receptors of this family comprise five subunits and are important targets for neuroactive drugs. The GlyR is best known for mediating inhibitory neurotransmission in the spinal cord and brain stem, although recent evidence suggests it may also have other physiological roles, including excitatory neurotransmission in embryonic neurons. To date, four alpha-subunits (alpha1 to alpha4) and one beta-subunit have been identified. The differential expression of subunits underlies a diversity in GlyR pharmacology. A developmental switch from alpha2 to alpha1beta is completed by around postnatal day 20 in the rat. The beta-subunit is responsible for anchoring GlyRs to the subsynaptic cytoskeleton via the cytoplasmic protein gephyrin. The last few years have seen a surge in interest in these receptors. Consequently, a wealth of information has recently emerged concerning Glyl? molecular structure and function. Most of the information has been obtained from homomeric alpha1 GlyRs, with the roles of the other subunits receiving relatively little attention. Heritable mutations to human GlyR genes give rise to a rare neurological disorder, hyperekplexia (or startle disease). Similar syndromes also occur in other species. A rapidly growing list of compounds has been shown to exert potent modulatory effects on this receptor. Since GlyRs are involved in motor reflex circuits of the spinal cord and provide inhibitory synapses onto pain sensory neurons, these agents may provide lead compounds for the development of muscle relaxant and peripheral analgesic drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammary gland is subjected to extensive calcium loads during lactation to support the requirements of milk calcium enrichment. Despite the indispensable nature of calcium homeostasis and signaling in regulating numerous biological functions, the mechanisms by which systemic calcium is transported into milk by the mammary gland are far from completely understood. Furthermore, the implications of calcium signaling in terms of reaulating proliferation, differentiation and apoptosis in the breast are currently uncertain. Deregulation of calcium homeostasis and signaling is associated with mammary gland pathophysiology and as such, calcium transporters, channels and binding proteins represent potential drug targets for the treatment of breast cancer. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cell receptors are among the most specific biological structures found in nature and are therefore excellent candidates for the molecular targeting of antigen. It is becoming increasingly apparent that common sets of T cell receptors are frequently used in humans to combat pathogen and cancer derived threats. Given that many of these conserved T cell receptors have high affinity for their target ligands, there is potential to amass virtual banks of “off-the-shelf” receptors for use in a wide range of immunotherapeutic strategies. Additionally, such T cell receptors could become basic blueprints for artificial enhancement through mutagenesis, thereby creating an even better 3-dimensional fit for their cognate targets. Indeed, preliminary approaches using both “natural” and “supernatural” T cell receptors have shown promise in treating autoimmunity and malignancy. This review will discuss these studies and other approaches through which T cell receptors can be exploited in immunodiagnostics, pathogen control and gene therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A complex set of axonal guidance mechanisms are utilized by axons to locate and innervate their targets. In the developing mouse forebrain, we previously described several midline glial populations as well as various guidance molecules that regulate the formation of the corpus callosum. Since agenesis of the corpus callosum is associated with over 50 different human congenital syndromes, we wanted to investigate whether these same mechanisms also operate during human callosal development. Here we analyze midline glial and commissural development in human fetal brains ranging from 13 to 20 weeks of gestation using both diffusion tensor magnetic resonance imaging and immunohistochemistry. Through our combined radiological and histological studies, we demonstrate the morphological development of multiple forebrain commissures/decussations, including the corpus callosum, anterior commissure, hippocampal commissure, and the optic chiasm. Histological analyses demonstrated that all the midline glial populations previously described in mouse, as well as structures analogous to the subcallosal sling and cingulate pioneering axons, that mediate callosal axon guidance in mouse, are also present during human brain development. Finally, by Northern blot analysis, we have identified that molecules involved in mouse callosal development, including Slit, Robo, Netrin1, DCC, Nfia, Emx1, and GAP-43, are all expressed in human fetal brain. These data suggest that similar mechanisms and molecules required for midline commissure formation operate during both mouse and human brain development. Thus, the mouse is an excellent model system for studying normal and pathological commissural formation in human brain development. (c) 2006 Wiley-Liss, Inc.