165 resultados para SPINAL MULTIPLE-SCLEROSIS
Resumo:
We report the observation of multiple bifurcations in a nonlinear Hamiltionian system: laser-cooled atoms in a standing wave with single-frequency intensity modulation. We provide clear evidence of the occurrence of bifurcations by analyzing the atomic momentum distributions.
Resumo:
We investigate the fluorescence spectrum of a two-level atom driven by a multiple amplitude-modulated field. The driving held is modeled as a polychromatic field composed of a strong central (resonant) component and a large number of symmetrically detuned sideband fields displaced from the central component by integer multiples of a constant detuning. Spectra obtained here differ qualitatively from those observed for a single pair of modulating fields [B. Blind, P.R. Fontana, and P. Thomann, J. Phys. B 13, 2717 (1980)]. In the case of a small number of the modulating fields, a multipeaked spectrum is obtained with the spectral features located at fixed frequencies that are independent of the number of modulating fields and their Rabi frequencies. As the number of the modulating fields increases, the spectrum ultimately evolves to the well-known Mellow triplet with the sidebands shifted from the central component by an effective Rabi frequency whose magnitude depends on the initial relative phases of the components of the driving held. For equal relative phases, the effective Rabi frequency of the driving field can be reduced to zero resulting in the disappearance of fluorescence spectrum, i.e., the atom can stop interacting with the field. When the central component and the modulating fields are 180 degrees out of phase, the spectrum retains its triplet structure with the sidebands located at frequencies equal to the sum of the Rabi frequencies of the component of the driving field. Moreover, we shaw that the frequency of spontaneous emission can be controlled and switched from one frequency to another when the Rabi frequency or initial phase of the modulating fields are varied.
Resumo:
Background: Patients with spinal cord injury (SCI) have always posed difficulties for the diagnosis of an acute abdomen. The aim of the present study was to define this problem retrospectively at Princess Alexandra Hospital and to assess the results of treatment for these patients. Methods: A retrospective review was conducted of 133 SCI patients admitted with an acute abdomen in the 16 years prior to this analysis at the Spinal Injuries Unit (SIU) of Princess Alexandra Hospital. There were 21 patients who conformed to the study criteria. All the patients had sustained traumatic SCI at or above the level of T11, more than 1 month prior to admission. Results: There were 13 male and eight female patients. The time lapse between SCI and the onset of an acute abdomen ranged from 1.5 months to 27 years. The age range was 26-79 years. The majority of patients had C6 injuries (six patients). There were 18 patients with injury levels above T6 and three patients with injuries below this level. The time taken to diagnose the cause of the acute abdomen ranged between 1 day and 3 months. Investigations were found to be useful in making the diagnoses in 61.9% of cases. There were 14 patients who had surgical interventions. Five patients had surgical complications and there were two deaths in the study. The length of follow up was 1-132 months. The mortality in the study was 9.5%. Conclusion: An aggressive approach to the diagnosis and treatment of the acute abdomen in SCI patients with suspicious symptoms is recommended. A high index of suspicion should be maintained in those patients with pre-existing SCI who present with abdominal trauma.
Resumo:
Electromyographic (EMG) studies have shown that a large number of trunk muscles are recruited during axial rotation. The functional roles of these trunk muscles in axial rotation are multiple and have not been well investigated. In addition, there is no information on the coupling torque at different exertion levels during axial rotation. The aim of the study was to investigate the functional roles of rectus abdominis. external oblique. internal oblique, latissimus dorsi, iliocostalis lumborum and multifidus during isometric right and left axial rotation at 100%, 70%, 50% and 30% maximum voluntary contractions (MVC) in a standing position. The coupling torques in sagittal and coronal planes were measured during axial rotation to examine the coupling nature of torque at different levels of exertions. Results showed that the coupled sagittal torque switches from nil to flexion at maximum exertion of axial rotation. Generally, higher EMG activities were shown at higher exertion levels for all the trunk muscles. Significant differences in activity between the right and left axial rotation exertions were demonstrated in external oblique, internal oblique, latissimus dorsi and iliocostalis lumborum while no difference was shown in rectus abdominis and multifidus. These results demonstrated the different functional roles of trunk muscles during axial rotation. This is important considering that the abdominal and back muscles not only produce torque but also maintain the spinal posture and stability during axial rotation exertions. The changing coupling torque direction in the sagittal plane when submaximal to maximal exertions were compared may indicate the complex nature of the kinetic coupling of trunk muscles. (C) 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The 16S rRNA gene (16S rDNA) is currently the most widely used gene for estimating the evolutionary history of prokaryotes, To date, there are more than 30 000 16S rDNA sequences available from the core databases, GenBank, EMBL and DDBJ, This great number may cause a dilemma when composing datasets for phylogenetic analysis, since the choice and number of reference organisms are known to affect the resulting tree topology. A group of sequences appearing monophyletic in one dataset may not be so in another. This can be especially problematic when establishing the relationships of distantly related sequences at the division (phylum) level. In this study, a multiple-outgroup approach to resolving division-level phylogenetic relationships is suggested using 16S rDNA data. The approach is illustrated by two case studies concerning the monophyly of two recently proposed bacterial divisions, OP9 and OP10.
Resumo:
Single cell genetic analysis is generally performed using PCR and FISH. Until recently, FISH has been the method of choice. FISH however is expensive, has significant misdiagnosis rates, can result in interpretation difficulties and is labour intensive making it unsuitable for high throughput processing. Recently fluorescent PCR reliability has increased to levels at or surpassing FISH whilst maintaining low cost. However, PCR accuracy has been a concern due to allelic dropout. Multiplex PCR can now increase accuracy by using multiple markers for each chromosome to firstly provide diagnosis if markers fail and,or secondly confirm diagnosis. We compare a variety of diagnostic methods and demonstrate for the first time a multiplex PCR system providing simultaneous diagnosis and confirmation of the major aneuploidy chromosomes (21, 18, 13) and sex as well as DNA fingerprint in single cells. We also discuss the implications of using PCR for aneuploidy screening in preimplantation genetic diagnosis. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Partitioned Bremer support (PBS) is a valuable means of assessing congruence in combined data sets, but some aspects require clarification. When more than one equally parsimonious tree is found during the constrained search for trees lacking the node of interest, averaging PBS for each data set across these trees can conceal conflict, and PBS should ideally be examined for each constrained tree. Similarly, when multiple most parsimonious trees (MPTs) are generated during analysis of the combined data, PBS is usually calculated on the consensus tree. However, extra information can be obtained if PBS is calculated on each of the MPTs or even suboptimal trees. (C) 2002 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
Resumo:
Two of the best understood somatic cell mRNA cytoplasmic trafficking elements are those governing localization of beta-actin and myelin basic protein mRNAs. These cis-acting elements bind the trans-acting factors fibroblast ZBP-1 and hnRNP A2, respectively. It is not known whether these elements fulfil other roles in mRNA metabolism. To address this question we have used Edman sequencing and western blotting to identify six rat brain proteins that bind the beta-actin element (zipcode). All are known RNA-binding proteins and differ from ZBP-1. Comparison with proteins that bind the hnRNP A2 and AU-rich response elements, A2RE/A2RE11 and AURE, showed that AURE and zipcode bind a similar set of proteins that does not overlap with those that bind A2RE11. The zipcode-binding protein, KSRP, and hnRNP A2 were selected for further study and were shown by confocal immunolluorescence microscopy to have similar distributions in the central nervous system, but they were found in largely separate locations in cell nuclei. In the cytoplasm of cultured oligodendrocytes they were segregated into separate populations of cytoplasmic granules. We conclude that not only may there be families of trans-acting factors for the same cis-acting element, which are presumably required at different stages of mRNA processing and metabolism, but independent factors may also target different and multiple RNAs in the same cell.
Resumo:
Three-dimensional (3D) synthetic aperture radar (SAR) imaging via multiple-pass processing is an extension of interferometric SAR imaging. It exploits more than two flight passes to achieve a desired resolution in elevation. In this paper, a novel approach is developed to reconstruct a 3D space-borne SAR image with multiple-pass processing. It involves image registration, phase correction and elevational imaging. An image model matching is developed for multiple image registration, an eigenvector method is proposed for the phase correction and the elevational imaging is conducted using a Fourier transform or a super-resolution method for enhancement of elevational resolution. 3D SAR images are obtained by processing simulated data and real data from the first European Remote Sensing satellite (ERS-1) with the proposed approaches.
Resumo:
We give conditions on f involving pairs of discrete lower and discrete upper solutions which lead to the existence of at least three solutions of the discrete two-point boundary value problem yk+1 - 2yk + yk-1 + f (k, yk, vk) = 0, for k = 1,..., n - 1, y0 = 0 = yn,, where f is continuous and vk = yk - yk-1, for k = 1,..., n. In the special case f (k, t, p) = f (t) greater than or equal to 0, we give growth conditions on f and apply our general result to show the existence of three positive solutions. We give an example showing this latter result is sharp. Our results extend those of Avery and Peterson and are in the spirit of our results for the continuous analogue. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A protocol based on seed culture was developed for efficient in vitro propagation of lentil (Lens culinaris Medik). Benzyladenine (BA), thidiazuron (TDZ), and kinetin all induced multiple shoot formation. In terms of the number of long shoots (>2.0 cm) produced per seed, BA and TDZ at optimum concentrations (0.2-0.4 and 0.1 mg/litre, respectively) had similar efficiency, whereas kinetin produced less shoots. Murashige and Skoog (MS) salt composition was better than that of Gamborge (B5) for shoot induction. Increasing calcium (Ca) concentration was necessary to overcome shoot-tip necrosis. For shoot elongation, fresh medium of the same composition of shoot induction medium could be used for stumps from medium with low BA (
Resumo:
We investigate the absorption and dispersion properties of a two-level atom driven by a polychromatic field. The driving field is composed of a strong resonant (carrier) frequency component and a large number of symmetrically detuned sideband fields (modulators). A rapid increase in the absorption at the central frequency and the collapse of the response of the system from multiple frequencies to a single frequency are predicted to occur when the Rabi frequency of the modulating fields is equal to the Rabi frequency of the carrier field. These are manifestations of the undressing or a disentanglement of the atomic and driving field states, that leads to a collapse of the atom to its ground state. Our calculation permits consideration of the question of the undressing of the driven atom by a multiple-modulated field and the predicted spectra offer a method of observing undressing. Moreover, we find that the absorption and dispersion spectra split into multiplets whose structures depend on the Rabi frequency of the modulating fields. The spectral features can jump between different resonance frequencies by changing the Rabi frequency of the modulating fields or their initial phases, which can have potential applications as a quantum frequency filter.
Resumo:
Each primary olfactory neuron stochastically expresses one of similar to1000 odorant receptors. The total population of these neurons therefore consists of similar to1,000 distinct subpopulations, each of which are mosaically dispersed throughout one of four semi-annular zones in the nasal cavity. The axons of these different subpopulations are initially intermingled within the olfactory nerve. However, upon reaching the olfactory bulb, they sort out and converge so that axons expressing the same odorant receptor typically target one or two glomeruli. The spatial location of each of these 1800 glomeruli are topographically-fixed in the olfactory bulb and are invariant from animal to animal. Thus, while odorant receptors are expressed mosaically by neurons throughout the olfactory neuroepithelium their axons sort out, converge and target the same glomerulus within the olfactory bulb. How is such precise and reproducible topographic targeting generated? While some of the mechanisms governing the growth cone guidance of olfactory sensory neurons are understood, the cues responsible for homing axons to their target site remain elusive.