187 resultados para Quantum-mechanics
Resumo:
The time evolution of the populations of the collective states of a two-atom system in a squeezed vacuum can exhibit quantum beats. We show that the effect appears only when the carrier frequency of the squeezed field is detuned from the atomic resonance. Moreover, we find that the quantum beats are not present for the case in which the two-photon correlation strength is the maximum possible for a field with a classical analog. We also show that the population inversion between the excited collective states, found for the resonant squeezed vacuum, is sensitive to the detuning and the two-photon correlations. For large detunings or a field with a classical analog there is no inversion between the collective states. Observation of the quantum beats or the population inversion would confirm the essentially quantum-mechanical nature of the squeezed vacuum. (C) 1997 Optical Society of America.
Resumo:
Using the method of quantum trajectories we show that a known pure state can be optimally monitored through time when subject to a sequence of discrete measurements. By modifying the way that we extract information from the measurement apparatus we can minimize the average algorithmic information of the measurement record, without changing the unconditional evolution of the measured system. We define an optimal measurement scheme as one which has the lowest average algorithmic information allowed. We also show how it is possible to extract information about system operator averages from the measurement records and their probabilities. The optimal measurement scheme, in the limit of weak coupling, determines the statistics of the variance of the measured variable directly. We discuss the relevance of such measurements for recent experiments in quantum optics.
Resumo:
By generalizing the Reshetikhin and Semenov-Tian-Shansky construction to supersymmetric cases, we obtain the Drinfeld current realization for the quantum affine superalgebra U-q[gl(m\n)((1))]. We find a simple coproduct for the quantum current generators and establish the Hopf algebra structure of this super current algebra.
Resumo:
Three kinds of integrable Kondo impurity additions to one-dimensional q-deformed extended Hubbard models are studied by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary K matrices depending on the local magnetic moments of the impurities are presented as nontrivial realisations of the reflection equation algebras in an impurity Hilbert space. The models are solved by using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained.
Resumo:
We consider the statistical properties of the local density of states of a one-dimensional Dirac equation in the presence of various types of disorder with Gaussian white-noise distribution. It is shown how either the replica trick or supersymmetry can be used to calculate exactly all the moments of the local density of states.' Careful attention is paid to how the results change if the local density of states is averaged over atomic length scales. For both the replica trick and supersymmetry the problem is reduced to finding the ground state of a zero-dimensional Hamiltonian which is written solely in terms of a pair of coupled spins which are elements of u(1, 1). This ground state is explicitly found for the particular case of the Dirac equation corresponding to an infinite metallic quantum wire with a single conduction channel. The calculated moments of the local density of states agree with those found previously by Al'tshuler and Prigodin [Sov. Phys. JETP 68 (1989) 198] using a technique based on recursion relations for Feynman diagrams. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Quantum dynamics simulations can be improved using novel quasiprobability distributions based on non-orthogonal Hermitian kernel operators. This introduces arbitrary functions (gauges) into the stochastic equations. which can be used to tailor them for improved calculations. A possible application to full quantum dynamic simulations of BEC's is presented. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We investigate the theory of quantum fluctuations in non-equilibrium systems having large critical fluctuations. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction, and also to envisage future tests of quantum theory in regions of macroscopic quantum fluctuations. A long-term objective of this research is to identify suitable physical systems in which macroscopic 'Schrodinger cat'-like behaviour may be observed. We investigate two systems in particular of much current experimental interest, namely the degenerate parametric oscillator near threshold, and the evaporatively cooled (BEC). We compare the results obtained in the positive-P representation, as a fully quantum mechanical calculation, with the truncated Wigner phase space equation, also known as semi-classical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. In the region where the largest quantum fluctuations and Schrodinger cat-like behaviour might be expected, we find that the quantum predictions correspond very closely to the semi-classical theory. Nature abhors observing a Schrodinger car.
Resumo:
The quasi mode theory of macroscopic quantization in quantum optics and cavity QED developed by Dalton, Barnett and Knight is generalized. This generalization allows for cases in which two or more quasi permittivities, along with their associated mode functions, are needed to describe the classical optics device. It brings problems such as reflection and refraction at a dielectric boundary, the linear coupler, and the coupling of two optical cavities within the scope of the theory. For the most part, the results that are obtained here are simple generalizations of those obtained in previous work. However the coupling constants, which are of great importance in applications of the theory, are shown to contain significant additional terms which cannot be 'guessed' from the simpler forms. The expressions for the coupling constants suggest that the critical factor in determining the strength of coupling between a pair of quasi modes is their degree of spatial overlap. In an accompanying paper a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary is given as an illustration of the generalized theory. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes.
Resumo:
The generalization of the quasi mode theory of macroscopic quantization in quantum optics and cavity QED presented in the previous paper, is applied to provide a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes. The derivation of the laws of reflection and refraction is achieved through the dual application of the quasi mode theory and a quantum scattering theory based on the Heisenberg picture. Formal expressions from scattering theory are given for the reflection and transmission coefficients. The behaviour of the intensity for a localized one photon wave packet coming in at time minus infinity from the incident direction is examined and it is shown that at time plus infinity, the light intensity is only significant where the classical laws of reflection and refraction predict. The occurrence of both refraction and reflection is dependent upon the quasi mode theory coupling constants between incident and transmitted region quasi modes being nonzero, and it is seen that the contributions to such coupling constants come from the overlap of the mode functions in the boundary layer region, as might be expected from a microscopic theory.
Resumo:
This paper deals with non-Markovian behavior in atomic systems coupled to a structured reservoir of quantum electromagnetic field modes, with particular relevance to atoms interacting with the field in high-Q cavities or photonic band-gap materials. In cases such as the former, we show that the pseudomode theory for single-quantum reservoir excitations can be obtained by applying the Fano diagonalization method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two, and many discrete quasimodes are made. For a simple photonic band-gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes.