152 resultados para Quantum computation and information
Resumo:
Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket and a quasidensity operator that is not positive definite. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Quantum mechanics is then viewed as a limiting form of classical mechanics, as Planck's constant approaches zero, rather than the other way around. The forms of semiquantum approximations to classical mechanics, analogous to semiclassical approximations to quantum mechanics, are indicated.
Resumo:
We study the spin-1/2 Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square lattice at one end, a set of decoupled spin chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations, and varying dimensionality. There is a large region of the usual two-sublattice Neel phase, a three-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wave vector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical. [S0163-1829(99)10421-1].
Resumo:
We review recent developments in quantum and classical soliton theory, leading to the possibility of observing both classical and quantum parametric solitons in higher-dimensional environments. In particular, we consider the theory of three bosonic fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic fields in a nonlinear optical medium this corresponds to the process of sum frequency generation (via chi((2)) nonlinearity) modified by the chi((3)) nonlinearity. Potential applications include an ultrafast photonic AND-gate. The simplest quantum solitons or energy eigenstates (bound-state solutions) of the interacting field Hamiltonian are obtained exactly in three space dimensions. They have a point-like structure-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with the imposition of a momentum cut-off on the nonlinear couplings. The case of three-dimensional matter-wave solitons in coupled atomic/molecular Bose-Einstein condensates is discussed.
Resumo:
The integral of the Wigner function over a subregion of the phase space of a quantum system may be less than zero or greater than one. It is shown that for systems with 1 degree of freedom, the problem of determining the best possible upper and lower bounds on such an integral, over an possible states, reduces to the problem of finding the greatest and least eigenvalues of a Hermitian operator corresponding to the subregion. The problem is solved exactly in the case of an arbitrary elliptical region. These bounds provide checks on experimentally measured quasiprobability distributions.
Resumo:
We show that an arbitrary system described by two dipole moments exhibits coherent superpositions of internal states that can be completely decoupled fi om the dissipative interactions (responsible for decoherence) and an external driving laser field. These superpositions, known as dark or trapping states, can he completely stable or can coherently interact with the remaining states. We examine the master equation describing the dissipative evolution of the system and identify conditions for population trapping and also classify processes that can transfer the population to these undriven and nondecaying states. It is shown that coherent transfers are possible only if the two systems are nonidentical, that is the transitions have different frequencies and/or decay rates. in particular, we find that the trapping conditions can involve both coherent and dissipative interactions, and depending on the energy level structure of the system, the population can be trapped in a linear superposition of two or more bare states, a dressed state corresponding to an eigenstate of the system plus external fields or, in some cases. in one of the excited states of the system. A comprehensive analysis is presented of the different processes that are responsible for population trapping, and we illustrate these ideas with three examples of two coupled systems: single V- and Lambda-type three-level atoms and two nonidentical tao-level atoms, which are known to exhibit dark states. We show that the effect of population trapping does not necessarily require decoupling of the antisymmetric superposition from the dissipative interactions. We also find that the vacuum-induced coherent coupling between the systems could be easily observed in Lambda-type atoms. Our analysis of the population trapping in two nonidentical atoms shows that the atoms can be driven into a maximally entangled state which is completely decoupled from the dissipative interaction.
Resumo:
It has been observed experimentally [H.R. Xia, C.Y. Ye, and S.Y. Zhu, Phys. Rev. Lett. 77, 1032 (1996)] that quantum interference between two molecular transitions can lead to a suppression or enhancement of spontaneous emission. This is manifest in the fluorescent intensity as a function of the detuning of the driving field from the two-photon resonance condition. Here we present a theory that explains the observed variation of the number of peaks with the mutual polarization of the molecular transition dipole moments. Using master equation techniques we calculate analytically as well as numerically the steady-state fluorescence, and find that the number of peaks depends on the excitation process. If the molecule is driven to the upper levels by a two-photon process, the fluorescent intensity consists of two peaks regardless of the mutual polarization of the transition dipole moments. Lf the excitation process is composed of both a two-step, one-photon process and a one-step, two-photon process, then there are two peaks on transitions with parallel dipole moments and three peaks on transitions with antiparallel dipole moments. This latter case is in excellent agreement with the experiment.
Resumo:
We analyze the fidelity of teleportation protocols, as a function of resource entanglement, for three kinds of two-mode oscillator states: states with fixed total photon number, number states entangled at a beam splitter, and the two-mode squeezed vacuum state. We define corresponding teleportation protocols for each case including phase noise to model degraded entanglement of each resource.
Resumo:
Background: Sexually transmitted diseases (STD) are important co-factors in HIV transmission. We studied the impact of health worker training and STD syndrome packets (containing recommended drugs, condoms, partner notification cards and information leaflets) on the quality of STD case management in primary care clinics in rural South Africa. Methods: A randomized controlled trial of five matched pairs of clinics compared the intervention with routine syndromic management. Outcomes were measured by simulated patients using standardized scripts, and included the proportion given recommended drugs; correctly case managed (given recommended drugs plus condoms and partner cards); adequately counselled; reporting good staff attitude; and consulted in privacy. Results: At baseline, the quality of STD case management was similarly poor in both groups. Only 36 and 46% of simulated patients visiting intervention and control clinics, respectively, were given recommended drugs. After the intervention, intervention clinics provided better case management than controls: 88 versus 50% (P < 0.01) received recommended drugs; 83 versus 12% (P < 0.005) were correctly case managed; 68 versus 46% (P = 0.06) were adequately counselled; 84 versus 58% experienced good staff attitude (P = 0.07); and 92 versus 86% (P = 0.4) were consulted privately. A syndrome packet cost US$1.50; the incremental cost was US$6.80. The total intervention cost equalled 0.3% of annual district health expenditure. Interpretation: A simple and affordable health service intervention achieved substantial improvements in STD case management. Although this is a critical component of STD control and can reduce HIV transmission, community-level interventions to influence health-seeking behaviour are also needed. (C) 2000 Lippincott Williams & Wilkins.
Resumo:
Background and Purpose - Unaccustomed strenuous physical exertion can trigger myocardial infarction, but little is known about the mechanisms precipitating subarachnoid hemorrhage (SAH). Methods - We identified all cases of first-ever SAH among the combined populations (2.8 million) of 4 urban centers in Australia and New Zealand. Information on the type, time, and intensity of exposures in the 26 hours before the onset of SAH was ascertained by structured interviews. We used the case-crossover technique to assess the risk of SAH associated with transient exposures of moderate to extreme physical exertion, heavy cigarette smoking, and binge alcohol consumption. Results - We registered 432 first-ever cases of SAH (62% women; mean age, 56.5 years). A definite time of onset of SAH was established for 393 patients (91%), and information on the levels of physical activity in the preceding 26 hours was obtained in 338 ( 78%). Of these patients, 19% engaged in moderate to extreme exertion (greater than or equal to5 metabolic equivalents) in the 2 hours before SAH, which was associated with a tripling in the risk of SAH (odds ratio [OR], 2.7; 95% CI, 1.6 to 4.6). There was no evidence of any association between heavy cigarette smoking or binge drinking and risk of SAH in the subsequent 2 hours ( OR, 1.1; 95% CI, 0.4 to 3.7; and OR, 0.41; 95% CI, -infinity to 5.3). Habitual exercise did not appear to alter the risk of SAH associated with moderate to extreme exertion. Conclusions - Moderate to extreme physical exertion tripled the risk of SAH, but there was no association between transient heavy smoking or binge drinking and risk of SAH. These data suggest that heavy physical activity may trigger SAH.
Resumo:
We describe a method by which the decoherence time of a solid-state qubit may be measured. The qubit is coded in the orbital degree of freedom of a single electron bound to a pair of donor impurities in a semiconductor host. The qubit is manipulated by adiabatically varying an external electric field. We show that by measuring the total probability of a successful qubit rotation as a function of the control field parameters, the decoherence rate may be determined. We estimate various system parameters, including the decoherence rates due to electromagnetic fluctuations and acoustic phonons. We find that, for reasonable physical parameters, the experiment is possible with existing technology. In particular, the use of adiabatic control fields implies that the experiment can be performed with control electronics with a time resolution of tens of nanoseconds.
Resumo:
We generalize a proposal for detecting single-phonon transitions in a single nanoelectromechanical system (NEMS) to include the intrinsic anharmonicity of each mechanical oscillator. In this scheme two NEMS oscillators are coupled via a term quadratic in the amplitude of oscillation for each oscillator. One NEMS oscillator is driven and strongly damped and becomes a transducer for phonon number in the other measured oscillator. We derive the conditions for this measurement scheme to be quantum limited and find a condition on the size of the anharmonicity. We also derive the relation between the phase diffusion back-action noise due to number measurement and the localization time for the measured system to enter a phonon-number eigenstate. We relate both these time scales to the strength of the measured signal, which is an induced current proportional to the position of the read-out oscillator.
Resumo:
In this work, we describe the process of teleportation between Alice in an inertial frame, and Rob who is in uniform acceleration with respect to Alice. The fidelity of the teleportation is reduced due to Davies-Unruh radiation in Rob's frame. In so far as teleportation is a measure of entanglement, our results suggest that quantum entanglement is degraded in non-inertial frames. We discuss this reduction in fidelity for both bosonic and fermionic resources.