129 resultados para packing geometry
Resumo:
The microbiological quality of routinely processed tripe and rumen pillars were compared with those derived after emptying the rumen (paunch) without using water (dry dumping) and after deliberately bursting the paunches before processing. Prior to packing the mean:log(10) aerobic plate counts (APC) for the routinely processed tripe and rumen pillars were 3.55+/-1.08 and 3.28+/-0.87/g respectively. The corresponding mean log(10) total coliform counts (TCC) were 1.27+/-1.28 and 2.08+/-0.87. The mean log(10) APC counts on tripe and rumen pillars after dry-dumping were 3.06+/-0.60 and 3.90+/-0.75/g, respectively. The corresponding mean log(10) TCC were 1.03+/-0.60/g and 2.75+/-1.14/g respectively. After deliberately bursting the paunches, before processing, the mean log(10) APC counts on tripe and rumen pillars were 3.55+/-0.83/g and 3.50+/-0.59/g and the mean log(10) TCC were 1.54+/-0.95/g and 2.66+/-0.82/g respectively. In all cases the prevalence of Salmonella and Campylobacter spp. was less than 3%. The results indicate that both tripe and rumen pillars can be produced after dry dumping without compromising the quality of tripe and rumen pillars. Similarly, incidentally burst paunches that become contaminated with ingesta on the serosal surface can be processed without compromising product quality. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
In this note strongly regular graphs with new parameters are constructed using nested "blown up" quadrics in projective spaces. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A perp-system R(r) is a maximal set of r-dimensional subspaces of PG(N,q) equipped with a polarity rho, such that the tangent space of an element of R(r) does not intersect any element of R(r). We prove that a perp-system yields partial geometries, strongly regular graphs, two-weight codes, maximal arcs and k-ovoids. We also give some examples, one of them yielding a new pg(8,20,2).
Resumo:
The unsaturated flow of liquid through packed beds of large particles was studied using six different liquids, all with contact angles greater than 90degrees on the bed packing (wax spheres of 9, 15 and 19.4 mm diameter). The liquid flow was discrete in nature, as drops for low flow rates and rivulets for high flow rates. For unsaturated liquid flows, the actual percolation velocity, not superficial velocity, should be used to characterize the flow. The percolation velocity did not vary with packed-bed depth, but was a strong function of liquid flow rate, liquid and particle properties. Effects of liquid and particle properties (but not flow rate) are well captured by a simple correlation between the liquid-particle friction factor and Reynolds number based on actual percolation velocities. Liquid dispersion, characterized by the maximum dispersion angle, varies significantly with liquid and particle properties. The tentative correlation suggested here needs further validation for a wider range of conditions.
Resumo:
We use published and new trace element data to identify element ratios which discriminate between arc magmas from the supra-subduction zone mantle wedge and those formed by direct melting of subducted crust (i.e. adakites). The clearest distinction is obtained with those element ratios which are strongly fractionated during refertilisation of the depleted mantle wedge, ultimately reflecting slab dehydration. Hence, adakites have significantly lower Pb/Nd and B/Be but higher Nb/Ta than typical arc magmas and continental crust as a whole. Although Li and Be are also overenriched in continental crust, behaviour of Li/Yb and Be/Nd is more complex and these ratios do not provide unique signatures of slab melting. Archaean tonalite-trondhjemite-granodiorites (TTGs) strongly resemble ordinary mantle wedge-derived arc magmas in terms of fluid-mobile trace element content, implying that they-did not form by slab melting but that they originated from mantle which was hydrated and enriched in elements lost from slabs during prograde dehydration. We suggest that Archaean TTGs formed by extensive fractional crystallisation from a mafic precursor. It is widely claimed that the time between the creation and subduction of oceanic lithosphere was significantly shorter in the Archaean (i.e. 20 Ma) than it is today. This difference was seen as an attractive explanation for the presumed preponderance of adakitic magmas during the first half of Earth's history. However, when we consider the effects of a higher potential mantle temperature on the thickness of oceanic crust, it follows that the mean age of oceanic lithosphere has remained virtually constant. Formation of adakites has therefore always depended on local plate geometry and not on potential mantle temperature.
Resumo:
The effects of convective and absolute instabilities on the formation of drops formed from cylindrical liquid jets of glycerol/water issuing into still air were investigated. Medium-duration reduced gravity tests were conducted aboard NASA's KC-135 and compared to similar tests performed under normal gravity conditions to aid in understanding the drop formation process. In reduced gravity, the Rayleigh-Chandrasekhar Equation was found to accurately predict the transition between a region of absolute and convective instability as defined by a critical Weber number. Observations of the physics of the jet, its breakup, and subsequent drop dynamics under both gravity conditions and the effects of the two instabilities on these processes are presented. All the normal gravity liquid jets investigated, in regions of convective or absolute instability, were subject to significant stretching effects, which affected the subsequent drop and associated geometry and dynamics. These effects were not displayed in reduced gravity and, therefore, the liquid jets would form drops which took longer to form (reduction in drop frequency), larger in size, and more spherical (surface tension effects). Most observed changes, in regions of either absolute or convective instabilities, were due to a reduction in the buoyancy force and an increased importance of the surface tension force acting on the liquid contained in the jet or formed drop. Reduced gravity environments allow better investigations to be performed into the physics of liquid jets, subsequently formed drops, and the effects of instabilities on these systems. In reduced gravity, drops form up to three times more slowly and as a consequence are up to three times larger in volume in the theoretical absolute instability region than in the theoretical convective instability region. This difference was not seen in the corresponding normal gravity tests due to the masking effects of gravity. A drop is shown to be able to form and detach in a region of absolute instability, and spanning the critical Weber number (from a region of convective to absolute instability) resulted in a marked change in dynamics and geometry of the liquid jet and detaching drops. (C) 2002 American Institute of Physics.
Resumo:
In humans, age estimation from the adult skeleton represents an attempt to determine chronological age based on growth and maturational events. In teeth, such events can be characterized by appositional growth layers in midroot cementum. The purpose of this study was to determine the underlying cause of the layered microstructure of human midroot cementum. Whether cementum growth layers are caused by changes in relative mineralization, collagen packing and/or orientation, or by variations in organic matrix apposition was investigated by subjecting midroot sections of human canine teeth to analysis using polarized light and scanning electron microscopy (SEM). Polarized light was used to examine transverse midroot sections in both mineralized and demineralized states. Mineralized sections were also reexamined following subsequent decollagenization. Polarized light was additionally used in the examination of mineralized sections taken transversely, longitudinally, and obliquely from the same tooth root. From the birefringence patterns it was concluded that collagen orientation does not change with varying section plane. Instead, the mineral phase was most responsible for the birefringence of the cementum. SEM studies suggested that neither collagen packing nor collagen orientation change across the width of the cementum, confirming and validating the results of the polarized light examination. Also, SEM analysis using electron backscatter and the electron probe suggested no changes in the mean atomic number density, calcium, phosphate, and sulfur levels across the width of the cementum. Therefore, we conclude that crystalline orientation and/or size is responsible for the layered appearance of cementum. (Bone 30:386-392; 2002) (C) 2002 by Elsevier Science Inc. All rights reserved.
Resumo:
Purpose: Because it is believed that bone may respond to exercise differently at different ages, we compared bone responses in immature and mature rats after 12 wk of treadmill running. Methods: Twenty-two immature (5-wk-old) and 21 mature (17-wk-old) female Sprague Dawley rats were randomized into a running (trained, N = 10 immature, 9 mature) or a control group (controls, N 12 immature, 12 mature) before sacrifice 12 wk later. Rats ran on a treadmill five times per week for 60-70 min at speeds up to 26 m.min(-1). Both at baseline and after intervention, we measured total body, lumbar spine, and proximal femoral bone mineral, as well as total body soft tissue composition using dual-energy x-ray absorptiometry (DXA) in vivo. After sacrificing the animals, we measured dynamic and static histomorphometry and three-point bending strength of the tibia. Results: Running training was associated with greater differences in tibial subperiosteal area, cortical cross-sectional area, peak load, stiffness, and moment of inertia in immature and mature rats (P < 0.05). The trained rats had greater periosteal bone formation rates (P < 0.01) than controls, but there was no difference in tibial trabecular bone histomorphometry. Similar running-related gains were seen in DXA lumbar spine area (P = 0.04) and bone mineral content (BMC; P = 0.03) at both ages. For total body bone area and BMC, the immature trained group increased significantly compared with controls (P < 0.05), whereas the mature trained group gained less than did controls (P < 0.01). Conclusion: In this in vivo model, where a similar physical training program was performed by immature and mature female rats, we demonstrated that both age groups were sensitive to loading and that bone strength gains appeared to result more from changes in bone geometry than from improved material properties.
Resumo:
The characteristics of sharkskin surface instability for linear low density polyethylene are studied as a function of film blowing processing conditions. By means of scanning electron microscopy and surface profilometry, is it found that for the standard industrial die geometry studied, sharkskin only occurs on the inside of the film bubble. Previous work suggests that this instability may be due to critical extensional stress levels at the exit of the die. Isothermal integral viscoelastic simulations of the annular extrusion process are reported, and confirm that the extensional stress at the die exit is large enough to cause local melt rupture. However the extensional stress level at the outer die wall predicts melt rupture of the outside bubble surface also, which contradicts the experimental findings. A significant temperature gradient is expected to exist across the die gap at the exit of the die, due to the external heating of the die and the low conductivity, of the polymer melt. It is shown that a gradient of 20 degreesC is required to cause sharkskin to only appear on the inner bubble surface.
Resumo:
The kinetics of single component adsorption on activated carbon is investigated here using a heterogeneous vacancy solution theory (VST) of adsorption. The adsorption isotherm is developed to account for the adsorbate non-ideality due to the size difference between the adsorbate molecule and the vacant site, while incorporating adsorbent heterogeneity through a pore-width-related potential energy. The transport process in the bidisperse carbon considers coupled mass transfer in both macropore and micropore phases simultaneously. Adsorbate diffusion in the micropore network is modeled through effective medium theory, thus considering pore network connectivity in the adsorbent, with the activation energy for adsorbate diffusion related to the adsorption energy, represented by the Steele 10-4-3 potential for carbons. Experimental data of five hydrocarbons, CO2 and SO2 on Ajax carbon at multiple temperatures, as well as three hydrocarbons on Norit carbon at three temperatures are first fitted by the heterogeneous VST model to obtain the isotherm parameters, followed by application of the kinetic model to uptake data on carbon particles of different sizes and geometry at various temperatures. For the hydrocarbons studied, the model can successfully correlate the experimental data for both adsorption equilibrium and kinetics. However, there is some deviation in the fit of the desorption kinetics for polar compounds such as CO2 and SO2, due to the inadequacy of the L-J potential model in this case. The significance of viscous transport in the micropores is also considered here and found to be negligible, consistent with recent molecular simulation studies. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper introduces a new reconstruction algorithm for electrical impedance tomography. The algorithm assumes that there are two separate regions of conductivity. These regions are represented as eccentric circles. This new algorithm then solves for the location of the eccentric circles. Due to the simple geometry of the forward problem, an analytic technique using conformal mapping and separation of variables has been employed. (C) 2002 John Wiley Sons, Inc.
Resumo:
The adsorption of three aromatic compounds on to an untreated carbon was investigated. The solution pH was lowered in all experiments so that all the solutes were in their molecular forms. It was shown that the difference in the maximum adsorption of the solutes was mainly a result of the difference in the sizes of the molecules and their functional groups. Further-more, it was illustrated that the packing arrangement was most likely edge-to-face (sorbate-sorbent) with various tilt angles. On the other hand, the affinity and heterogeneity of the adsorption systems were apparently related to the pK(a) values of the solutes.
Resumo:
Along with material characteristics and geometry, the climate in which a mine is located can have a dramatic effect on the appropriate options for rehabilitation. The paper outlines the setting, mining, milling and waste disposal at Kidston Gold Mine's open pit operations in the semi-arid climate of North Queensland, Australia, before focusing on the engineering aspects of the rehabilitation of Kidston. The mine took a holistic and proactive approach to rehabilitation, and was prepared to demonstrate a number of innovative approaches, which are described in the paper. Engineering issues that had to be addressed included the geotechnical stability and deformation of waste rock dumps, including a 240 m high in-pit dump: the construction and performance monitoring of a “store and release” cover over potentially acid forming mineralised waste rock; erosion from the side slopes of the waste rock dumps; the in-pit co-disposal of waste rock and thickened tailings; the geotechnical stability of the tailings dam wall; the potential for erosion of bare tailings; the water balance of the tailings dam; direct revegetation of the tailings; and the pit hydrology. The rehabilitation of the mine represents an important benchmark in mine site rehabilitation best practice, from which lessons applicable worldwide can be shared.
Resumo:
The particle-based Lattice Solid Model (LSM) was developed to provide a basis to study the physics of rocks and the nonlinear dynamics of earthquakes (MORA and PLACE, 1994; PLACE and MORA, 1999). A new modular and flexible LSM approach has been developed that allows different microphysics to be easily included in or removed from the model. The approach provides a virtual laboratory where numerical experiments can easily be set up and all measurable quantities visualised. The proposed approach provides a means to simulate complex phenomena such as fracturing or localisation processes, and enables the effect of different micro-physics on macroscopic behaviour to be studied. The initial 2-D model is extended to allow three-dimensional simulations to be performed and particles of different sizes to be specified. Numerical bi-axial compression experiments under different confining pressure are used to calibrate the model. By tuning the different microscopic parameters (such as coefficient of friction, microscopic strength and distribution of grain sizes), the macroscopic strength of the material and can be adjusted to be in agreement with laboratory experiments, and the orientation of fractures is consistent with the theoretical value predicted based on Mohr-Coulomb diagram. Simulations indicate that 3-D numerical models have different macroscopic properties than in 2-D and, hence, the model must be recalibrated for 3-D simulations. These numerical experiments illustrate that the new approach is capable of simulating typical rock fracture behaviour. The new model provides a basis to investigate nucleation, rupture and slip pulse propagation in complex fault zones without the previous model limitations of a regular low-level surface geometry and being restricted to two-dimensions.
Resumo:
In order to understand the earthquake nucleation process, we need to understand the effective frictional behavior of faults with complex geometry and fault gouge zones. One important aspect of this is the interaction between the friction law governing the behavior of the fault on the microscopic level and the resulting macroscopic behavior of the fault zone. Numerical simulations offer a possibility to investigate the behavior of faults on many different scales and thus provide a means to gain insight into fault zone dynamics on scales which are not accessible to laboratory experiments. Numerical experiments have been performed to investigate the influence of the geometric configuration of faults with a rate- and state-dependent friction at the particle contacts on the effective frictional behavior of these faults. The numerical experiments are designed to be similar to laboratory experiments by DIETERICH and KILGORE (1994) in which a slide-hold-slide cycle was performed between two blocks of material and the resulting peak friction was plotted vs. holding time. Simulations with a flat fault without a fault gouge have been performed to verify the implementation. These have shown close agreement with comparable laboratory experiments. The simulations performed with a fault containing fault gouge have demonstrated a strong dependence of the critical slip distance D-c on the roughness of the fault surfaces and are in qualitative agreement with laboratory experiments.