191 resultados para Spontaneous Dizygotic Twins
Resumo:
Natural tumor surveillance capabilities of the host were investigated in six different mouse tumor models where endogenous interleukin (IL)-12. does or does not dictate the efficiency of the innate immune response. Gene-targeted and lymphocyte subset-depleted mice were used to establish the relative importance of natural killer (NK) and NK1.1(+) T (NKT) cells in protection from tumor initiation and metastasis. In the models examined, CD3(-) NK cells were responsible for tumor rejection and protection from metastasis in models where control of major histocompatibility complex class I-deficient tumors was independent of IL-12, A protective role for NKT cells was only observed when tumor rejection required endogenous IL-12 activity. In particular, T cell receptor J alpha 281 gene-targeted mice confirmed a critical function for NKT cells in protection from spontaneous tumors initiated by the chemical carcinogen, methylcholanthrene. This is the first description of an antitumor function for NKT cells in the absence of exogenously administered potent stimulators such as IL-12 or alpha-galactosylceramide.
Resumo:
Recent reports have shown neurodegenerative disorders to be associated with abnormal expansions of a CAG trinucleotide repeat allele at various autosomal loci. While normal chromosomes have 14 to 44 repeats, disease chromosomes may have 60 to 84 repeats. The number of CAG repeats on mutant chromosomes correlates with increasing severity of disease or decreasing age at onset of symptoms. Since we are interested in identifying the many quantitative trait loci (QTL) influencing brain functioning, we examined the possibility that the number of CAG repeats in the normal size range at these loci are relevant to "normal" neural functioning. We have used 150 pairs of adolescent (aged 16 years) twins and their parents to examine allele size at the MJD, SCA1, and DRPLA loci in heterozygous normal individuals. These are part of a large ongoing project using cognitive and physiological measures to investigate the genetie influences on cognition, and an extensive protocol of tests is employed to assess some of the key components of intellectual functioning. This study selected to examine full-scale psychometric IQ (FSIQ) and a measure of information processing (choice reaction time) and working memory (slow wave amplitude). CAG repeat size was determined on an ABI Genescan system following multiplex PCR amplification. Quantitative genetic analyses were performed to determine QTL effects of MJD, SCA1, and DRPLA on cognitive functioning. Analyses are in progress and will be discussed.
Resumo:
We show that an arbitrary system described by two dipole moments exhibits coherent superpositions of internal states that can be completely decoupled fi om the dissipative interactions (responsible for decoherence) and an external driving laser field. These superpositions, known as dark or trapping states, can he completely stable or can coherently interact with the remaining states. We examine the master equation describing the dissipative evolution of the system and identify conditions for population trapping and also classify processes that can transfer the population to these undriven and nondecaying states. It is shown that coherent transfers are possible only if the two systems are nonidentical, that is the transitions have different frequencies and/or decay rates. in particular, we find that the trapping conditions can involve both coherent and dissipative interactions, and depending on the energy level structure of the system, the population can be trapped in a linear superposition of two or more bare states, a dressed state corresponding to an eigenstate of the system plus external fields or, in some cases. in one of the excited states of the system. A comprehensive analysis is presented of the different processes that are responsible for population trapping, and we illustrate these ideas with three examples of two coupled systems: single V- and Lambda-type three-level atoms and two nonidentical tao-level atoms, which are known to exhibit dark states. We show that the effect of population trapping does not necessarily require decoupling of the antisymmetric superposition from the dissipative interactions. We also find that the vacuum-induced coherent coupling between the systems could be easily observed in Lambda-type atoms. Our analysis of the population trapping in two nonidentical atoms shows that the atoms can be driven into a maximally entangled state which is completely decoupled from the dissipative interaction.
Resumo:
It has been observed experimentally [H.R. Xia, C.Y. Ye, and S.Y. Zhu, Phys. Rev. Lett. 77, 1032 (1996)] that quantum interference between two molecular transitions can lead to a suppression or enhancement of spontaneous emission. This is manifest in the fluorescent intensity as a function of the detuning of the driving field from the two-photon resonance condition. Here we present a theory that explains the observed variation of the number of peaks with the mutual polarization of the molecular transition dipole moments. Using master equation techniques we calculate analytically as well as numerically the steady-state fluorescence, and find that the number of peaks depends on the excitation process. If the molecule is driven to the upper levels by a two-photon process, the fluorescent intensity consists of two peaks regardless of the mutual polarization of the transition dipole moments. Lf the excitation process is composed of both a two-step, one-photon process and a one-step, two-photon process, then there are two peaks on transitions with parallel dipole moments and three peaks on transitions with antiparallel dipole moments. This latter case is in excellent agreement with the experiment.
Resumo:
OBJECTIVE: This study ascertains the relative contributions of genetics and environment in determining methane emission in humans and rats. There is considerable interest in the factors determining the microbial species that inhabit the colon. Methanogens, which are archaebacteria, are an easily detected colonic luminal bacteria because they respire methane. They are present in some but not all human colons and lower animal hindguts. Opinion varies on the nature of the factors influencing this ecology with some studies proposing the existence of host genetic influences. METHODS: Methane emission was measured in human twin pairs by gas chromatography, and structural equation modeling was used to determine the proportion of genetic and environmental determinants. The importance of the timing of environmental effects and rat strain on the trait of methane emission were ascertained by experiments with cohabiting methanogenic and nonmethanogenic rats. RESULTS: Analysis of breath samples from 274 adolescent twin pairs and their families indicated that the major influences on the trait of methane emission are the result of shared (53%, 95% confidence interval 39-61) and unique environmental (47%, 95% confidence interval 38-56) effects. No significant autosomal genetic effects were detected, but as observed in other studies, men (37%) were less likely to excrete methane in their breath than women (63%). Investigation of methane emission in rats indicated that environmental effects in this animal are most potent during the weaning period, with stable gut microbial ecology thereafter for some but not all rat strains. CONCLUSIONS: These results are consistent with shared and unique environmental factors being the main determinants of the ecology of this colonic microbe. (Am J Gastroenterol 2000;95:2872-2879. (C) 2000 by Am. Coll. of Gastroenterology).
Resumo:
Objective The syndrome of inappropriate secretion of antidiuretic hormone is a rare disorder in dogs characterised by hypo-osmolality and persistent arginine vasopressin production in the absence of hypovolaemia and/or hypotension. The study describes the efficacy and safety of the nonpeptide selective arginine vasopressin V-2 receptor antagonist OPC-31260 in a dog with the naturally occurring syndrome. Design The detailed case history of a dog with spontaneous syndrome of inappropriate secretion of antidiuretic hormone that received long-term therapy with oral OPC-31260 is presented. Effects of the first dose of OPC-31260 and of a dose administered after a continuous dosing period of 12 days are reported. Procedure Packed cell volume, plasma sodium, total protein, arginine vasopressin, renin activity, atrial natriuretic peptide, urine specific gravity, urine output, heart rate and body weight were monitored for 2 h before, and for 4 h after, the first dose of OPC-31260. The same parameters plus plasma osmolality and urine osmolality were monitored when an identical dose was administered after 12 days of therapy. Results Oral administration of OPC-31260 at 3 mg/kg body weight resulted in marked aquaresis with increased urine output and decline in urine specific gravity within 1 h. Corresponding increases in concentrations of plasma sodium, plasma osmolality and plasma renin activity were recorded over a 4 h period. Arginine vasopressin concentration remained inappropriately elevated throughout the study. Results were similar when the trial procedure was repeated after a stabilisation period of 12 days. Long-term therapy with OPC-31260 at a dose of 3 mg/kg body weight orally every 12 h resulted in good control of clinical signs with no deleterious effects detected during a 3-year follow-up period. Despite sustained clinical benefits observed in this case, plasma sodium did not normalise with continued administration of the drug. Conclusions Treatment of a dog with naturally occurring syndrome of inappropriate secretion of antidiuretic hormone with OPC-31260 at 3 mg/kg body weight orally every 12 h resulted in marked aquaresis and significant palliation of clinical signs with no discernible side-effects detected over a 3-year period. Thus, OPC-31260 appears to offer a feasible medical alternative to water restriction for treatment of dogs with syndrome of inappropriate secretion of antidiuretic hormone. Higher doses of OPC-31260 may be required to achieve and maintain normal plasma sodium in dogs with this syndrome.
Resumo:
Perforin (pfp) and interferon-gamma (IFN-gamma) together in C57BL/6 (B6) and BALB/c mouse strains provided optimal protection in 3 separate tumor models controlled by innate immunity. Using experimental (B6, RM-1 prostate carcinoma) and spontaneous (BALB/c, DA3 mammary carcinoma) models of metastatic cancer, mice deficient in both pfp and IFN-gamma were significantly less proficient than pfp- or IFN-gamma -deficient mice in preventing metastasis of tumor cells to the lung. Pfp and IFN-gamma -deficient mice were as susceptible as mice depleted of natural killer (NK) cells in both tumor metastasis models, and IFN-gamma appeared to play an early role in protection from metastasis, Previous experiments in a model of fibrosarcoma induced by the chemical carcinogen methylcholanthrene indicated an important role for NK1.1(+) T cells, Herein, both pfp and IFN-gamma played critical and independent roles in providing the host with protection equivalent to that mediated by NK1.1+ T cells, Further analysis demonstrated that IFN-gamma, but not pfp, controlled the growth rate of sarcomas arising in these mice. Thus, this is the first study to demonstrate that host IFN-gamma, and direct cytotoxicity mediated by cytotoxic lymphocytes expressing pfp independently contribute antitumor effector functions that together control the initiation, growth, and spread of tumors in mice, (C) 2001 by The American Society of Hematology.
Resumo:
This study examined if (1) there is an association in the general population between cannabis use, DSM-IV abuse and dependence, and other substance use and DSM-IV substance abuse/dependence; (2) if so, is it explained by demographic characteristics or levels of neuroticism? It used data from the Australian National Survey of Mental Health and Well-Being (NSMHWB), a stratified, multistage probability sample of 10641 adults, representative of the general population. DSM-IV diagnoses of substance abuse and dependence were derived using the Composite International Diagnostic Interview (CIDI). There was a strong bivariate association between involvement with cannabis use in the past 12 months and other substance use, abuse and dependence. In particular, cannabis abuse and dependence were highly associated with increased risks of other substance dependence. These associations remained after including other variables in multiple regression. Cannabis use without disorder was strongly related to other drug use, an association that was not explained by other variables considered here. The high likelihood of other substance use and substance use disorders needs to be considered among persons seeking treatment for cannabis use problems. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The immunosurveillance of transformed cells by the immune system remains one of the most controversial and poorly understood areas of immunity. Gene-targeted mice have greatly aided our understanding of the key effector molecules in tumor immunity. Herein, we describe spontaneous tumor development in gene-targeted mice lacking interferon (IFN)-gamma and/or perform (pfp), or the immunoregulatory cytokines, interleukin (IL)-12, IL-18, and tumor necrosis factor (TNF). Both IFN-gamma and pfp were critical for suppression of lymphomagenesis, however the level of protection afforded by IFN-gamma was strain specific. Lymphomas arising in IFN-gamma deficient mice were very nonimmunogenic compared with those derived from pfp-deficient mice, suggesting a comparatively weaker immunoselection pressure by IFN-gamma. Single loss of IL-12, IL-18, or TNF was not sufficient for spontaneous tumor development. A significant incidence of late onset adenocarcinoma observed in both IFN-gamma- and pfp-deficient mice indicated that some epithelial tissues were also subject to immunosurveillance.
Resumo:
We show that quantum feedback control can be used as a quantum-error-correction process for errors induced by a weak continuous measurement. In particular, when the error model is restricted to one, perfectly measured, error channel per physical qubit, quantum feedback can act to perfectly protect a stabilizer codespace. Using the stabilizer formalism we derive an explicit scheme, involving feedback and an additional constant Hamiltonian, to protect an (n-1)-qubit logical state encoded in n physical qubits. This works for both Poisson (jump) and white-noise (diffusion) measurement processes. Universal quantum computation is also possible in this scheme. As an example, we show that detected-spontaneous emission error correction with a driving Hamiltonian can greatly reduce the amount of redundancy required to protect a state from that which has been previously postulated [e.g., Alber , Phys. Rev. Lett. 86, 4402 (2001)].
Resumo:
Controversy still exists regarding the biological function of granzyme serine proteases released with perforin from the cytotoxic granules of NK cells and CTLs. In particular, it is not clear whether the major granzymes, A and A play an essential role in tumor rejection mediated by the perforin pathway. We have now examined the relative importance of perforin and granzyme A and B clusters in five different tumor models that stringently distinguish their importance. We conclude that granzyme A and B clusters are not essential for CTL- and NK cell-mediated rejection of spontaneous and experimental tumors, raising the likelihood that either perforin alone or in combination with an additional granzyme or granule component(s) mediates cytotoxicity of tumor cells in vivo.
Resumo:
We discuss quantum error correction for errors that occur at random times as described by, a conditional Poisson process. We shoo, how a class of such errors, detected spontaneous emission, can be corrected by continuous closed loop, feedback.
Resumo:
The spastic (spa) and oscillator (ot) mouse have naturally occurring mutations in the inhibitory glycine receptor (GlyR) and exhibit severe motor disturbances when exposed to unexpected sensory stimuli. We examined the effects of the spa and ot mutations on GlyR- and GABA(A)R-mediated synaptic transmission in the superficial dorsal horn (SFDH), a spinal cord region where inhibition is important for nociceptive processing. Spontaneous mIPSCs were recorded from visually identified neurones in parasagittal spinal cord slices. Neurones received exclusively GABA(A)R-mediated mIPSCs, exclusively GlyR-mediated mIPSCs or both types of mIPSCs. In control mice (wild-type and spa/+) over 40 % of neurones received both types of mIPSCs, over 30 % received solely GABA(A)R-mediated mIPSCs and the remainder received solely GlyR-mediated mIPSCs. In spa/spa animals, 97 % of the neurones received exclusively GABA(A)ergic or both types of mIPSCs. In ot/ot animals, over 80 % of the neurones received exclusively GABA(A)R-mediated mIPSCs. GlyR-mediated mIPSC amplitude and charge were reduced in spa/spa and ot/ot animals. GABA,Rmediated mIPSC amplitude and charge were elevated in spa/spa but unaltered in ot/ot animals. GlyR- and GABA(A)R-mediated mIPSC decay times were similar for all genotypes, consistent with the mutations altering receptor numbers but not kinetics. These findings suggest the spastic and oscillator mutations, traditionally considered motor disturbances, also disrupt inhibition in a sensory region associated with nociceptive transmission. Furthermore, the spastic mutation results in a compensatory increase in GABA(A)ergic transmission in SFDH neurones, a form of inhibitory synaptic plasticity absent in the oscillator mouse.