150 resultados para Poliomyelitis vaccine
Resumo:
It has been shown previously that recombinant virus-like particles (VLPs) of papillomavirus can induce VLP-specific humoral and cellular immune responses following parenteral administration. To test whether mucosal administration of bovine papillomavirus type 1 (BPV1) VLPs could produce mucosal as well as systemic immune responses to VLPs, 50 mu g chimeric BPV1 VLPs containing an HPV16 E7 CTL epitope (BPVL1/E7 VLP) was administered intranasally to mice. After two immunisations, L1-specific serum IgG and IgA were observed. L1-specific IgG and IgA were also found in respiratory and vaginal secretions. Both serum and mucosal antibody inhibited papillomavirus VLP-induced agglutination of RBC, indicating that the antibody induced by mucosal immunisation may recognize conformational determinants associated with virus neutralisation. For comparison, VLPs were given intramuscularly, and systemic and mucosal immune responses were generally comparable following systemic or mucosal delivery. However, intranasal administration of VLP induced significantly higher local IgA response in lung, suggesting that mucosally delivered HPV VLP may be more effective for mediating local mucosal immune responses. Intranasal immunisation with HPV6b L1 VLP produced VLP-specific T proliferative responses in splenocytes, and immunisation with BPVL1 VLP containing an HPV16 E7 CTL epitope induced E7-specific CTL responses. We conclude that immunisation with papillomavirus VLPs via mucosal and intramuscular routes, without adjuvant, can elicit specific antibody at mucosal surfaces and also systemic VLP epitope specific T cell responses. These findings suggest that mucosally delivered VLPs may offer an alternative HPV VLP vaccine strategy for inducing protective humoral immunity to anogenital HPV infection, together with cell-mediated immune responses to eliminate any cells which become infected. (C) 1998 Academic Press.
Resumo:
We have determined the post-translational modifications of the major capsid protein, L1 of human papillomavirus (HPV) type 6b. Since this virus cannot be cultured in the laboratory to obtain sufficient material for a study, a recombinant L1 protein produced in a vaccinia virus expression system was used in this investigation. Our results show that this protein is phosphorylated at serine residues and is also glycosylated. No myristoylation or palmitoylation was detected. The fraction of L1 protein incorporated into virus-like particles was not glycosylated. Since recombinant L1 protein is a potential human vaccine candidate, knowledge of the post-translation modifications of this protein may prove useful for the design of anti-HPV vaccines. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Recombinant bacille Calmette-Guerin (BCG) based vaccine delivery systems could potentially share the safety and effectiveness of BCG. We therefore prepared recombinant BCG vaccines which expressed the L1 late protein of the human papillomavirus (HPV) 6b or the E7 early protein of the HPV 16. The two recombinants were evaluated as immunogens in C57BL/6J and BALB/c mice, and compared with a conventional protein/adjuvant system using E7 or L1 mixed with Quil-A adjuvant. rBCG6bL1 and rBCG16E7 primed specific immune responses, represented by DTH, T-proliferation and antibody, and rBCG16E7 induced cytotoxic immune response to E7 protein. The magnitude of the observed responses were less than those elicited by protein/adjuvant vaccine. As recombinant BCG vaccines expressing HPV6bL1 or HPV16E7 persist at low levels in the immunised host, they may be beneficial to prime or retain memory responses to antigens, but are unlikely to be useful as a single component vaccine strategy. (C) 2000 Elsevier science Ltd. All rights reserved.
Resumo:
Chimeric papillomavirus (PV) virus-like particles (VLPs) based on the bovine papillomavirus type 1 (BPV-1) L1 protein were constructed by replacing the 23-carboxyl-terminal amino acids of the BPV1 major protein L1 with an artificial polytope minigene, containing known CTL epitopes of human PV16 E7 protein, HIV IIIB gp120 P18, Nef, and reverse transcriptase (RT) proteins, and an HPV16 E7 linear B epitope. The CTL epitopes were restricted by three different MHC class 1 alleles (H-2(b), H-2(d), HLA-A*0201). The chimeric L1 protein assembled into VLPs when expressed in SF-9 cells by recombinant baculovirus. After immunization of mice with polytope VLPs in the absence of adjuvant, serum antibodies were detected which reacted with both polytope VLPs and wild-type BPV1L1 VLPs, in addition to the HPV16E7 linear B cell epitope. CTL precursors specific for the HPV16 E7, HIV P18, and RT CTL epitopes were also detected in the spleen of immunized mice. Polytope VLPs can thus deliver multiple B and T epitopes as immunogens to the MHC class I and class II pathways, extending the utility of VLPs as self-adjuvanting immunogen delivery systems. (C) 2000 Academic Press.
Resumo:
Virus-like particles (VLPs) are being currently investigated in vaccines against viral infections in humans. There are different recombinant-protein-expression systems available for obtaining the necessary VLP preparation for vaccination. However, the differences in post-translational modifications of the recombinant proteins obtained and their differences in efficacy in eliciting an anti-viral response in vaccines are not well established. In this study we have compared the posttranslational modifications of human papillomavirus type-6b major capsid protein L1 (HPV 6bL1) expressed using recombinant baculovirus (rBV) in Sf9 (Spodoptera frugiperda) insect cells, with the protein expressed using recombinant vaccinia virus (rVV) in CV-1 kidney epithelial cells, Two-dimensional gel electrophoresis of biosynthetically labelled rBV-expressed HPV 6bL1 showed several post-translationally modified variants of the protein, whereas rVV-expressed HPV 6bL1 showed only a few variants. Phosphorylations were detected at threonine and serine residues for the L1 expressed from rBV compared with phosphorylation at serine residues only for the L1 expressed from rVV. HPV 6bL1 expressed using rBV incorporated [H-3]mannose and [H-3]galactose, whereas HPV 6bL1 expressed using rVV incorporated only [H-3]galactose. We conclude that post-translational modification of recombinant HPV 6bL1 can differ according to the system used for its expression. Since recombinant L1 protein is a potential human-vaccine candidate, the implication of the observed differences in post-translational modifications on immunogenicity of L1 VLPs warrants investigation.
Resumo:
We present a method of estimating HIV incidence rates in epidemic situations from data on age-specific prevalence and changes in the overall prevalence over time. The method is applied to women attending antenatal clinics in Hlabisa, a rural district of KwaZulu/Natal, South Africa, where transmission of HIV is overwhelmingly through heterosexual contact. A model which gives age-specific prevalence rates in the presence of a progressing epidemic is fitted to prevalence data for 1998 using maximum likelihood methods and used to derive the age-specific incidence. Error estimates are obtained using a Monte Carlo procedure. Although the method is quite general some simplifying assumptions are made concerning the form of the risk function and sensitivity analyses are performed to explore the importance of these assumptions. The analysis shows that in 1998 the annual incidence of infection per susceptible woman increased from 5.4 per cent (3.3-8.5 per cent; here and elsewhere ranges give 95 per cent confidence limits) at age 15 years to 24.5 per cent (20.6-29.1 per cent) at age 22 years and declined to 1.3 per cent (0.5-2.9 per cent) at age 50 years; standardized to a uniform age distribution, the overall incidence per susceptible woman aged 15 to 59 was 11.4 per cent (10.0-13.1 per cent); per women in the population it was 8.4 per cent (7.3-9.5 per cent). Standardized to the age distribution of the female population the average incidence per woman was 9.6 per cent (8.4-11.0 per cent); standardized to the age distribution of women attending antenatal clinics, it was 11.3 per cent (9.8-13.3 per cent). The estimated incidence depends on the values used for the epidemic growth rate and the AIDS related mortality. To ensure that, for this population, errors in these two parameters change the age specific estimates of the annual incidence by less than the standard deviation of the estimates of the age specific incidence, the AIDS related mortality should be known to within +/-50 per cent and the epidemic growth rate to within +/-25 per cent, both of which conditions are met. In the absence of cohort studies to measure the incidence of HIV infection directly, useful estimates of the age-specific incidence can be obtained from cross-sectional, age-specific prevalence data and repeat cross-sectional data on the overall prevalence of HIV infection. Several assumptions were made because of the lack of data but sensitivity analyses show that they are unlikely to affect the overall estimates significantly. These estimates are important in assessing the magnitude of the public health problem, for designing vaccine trials and for evaluating the impact of interventions. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Peptides that induce and recall T-cell responses are called T-cell epitopes. T-cell epitopes may be useful in a subunit vaccine against malaria. Computer models that simulate peptide binding to MHC are useful for selecting candidate T-cell epitopes since they minimize the number of experiments required for their identification. We applied a combination of computational and immunological strategies to select candidate T-cell epitopes. A total of 86 experimental binding assays were performed in three rounds of identification of HLA-All binding peptides from the six preerythrocytic malaria antigens. Thirty-six peptides were experimentally confirmed as binders. We show that the cyclical refinement of the ANN models results in a significant improvement of the efficiency of identifying potential T-cell epitopes. (C) 2001 by Elsevier Science Inc.
Resumo:
Promiscuous T-cell epitopes make ideal targets for vaccine development. We report here a computational system, multipred, for the prediction of peptide binding to the HLA-A2 supertype. It combines a novel representation of peptide/MHC interactions with a hidden Markov model as the prediction algorithm. multipred is both sensitive and specific, and demonstrates high accuracy of peptide-binding predictions for HLA-A*0201, *0204, and *0205 alleles, good accuracy for *0206 allele, and marginal accuracy for *0203 allele. multipred replaces earlier requirements for individual prediction models for each HLA allelic variant and simplifies computational aspects of peptide-binding prediction. Preliminary testing indicates that multipred can predict peptide binding to HLA-A2 supertype molecules with high accuracy, including those allelic variants for which no experimental binding data are currently available.
Resumo:
Background: A variety of methods for prediction of peptide binding to major histocompatibility complex (MHC) have been proposed. These methods are based on binding motifs, binding matrices, hidden Markov models (HMM), or artificial neural networks (ANN). There has been little prior work on the comparative analysis of these methods. Materials and Methods: We performed a comparison of the performance of six methods applied to the prediction of two human MHC class I molecules, including binding matrices and motifs, ANNs, and HMMs. Results: The selection of the optimal prediction method depends on the amount of available data (the number of peptides of known binding affinity to the MHC molecule of interest), the biases in the data set and the intended purpose of the prediction (screening of a single protein versus mass screening). When little or no peptide data are available, binding motifs are the most useful alternative to random guessing or use of a complete overlapping set of peptides for selection of candidate binders. As the number of known peptide binders increases, binding matrices and HMM become more useful predictors. ANN and HMM are the predictive methods of choice for MHC alleles with more than 100 known binding peptides. Conclusion: The ability of bioinformatic methods to reliably predict MHC binding peptides, and thereby potential T-cell epitopes, has major implications for clinical immunology, particularly in the area of vaccine design.
Resumo:
Vaccines to prevent PV infection, utilising PV L1 virus like particles (VLPs) to induce neutralising antibody, are in clinical trial and show all the characteristics likely to be associated with success. Results warrant global planning for the deployment of VLP vaccines within a decade, as part of a program to prevent cervical cancer. Vaccines designed to treat existing PV infection by inducing therapeutic cellular immunity targeted to PV proteins are at a much earlier stage of development. The wide choice of potential and proposed antigens, routes and mechanisms of delivery, and possible treatment regimens suggest that, to move the field forward, surrogate markers allowing comparison of the relative efficacy of different vaccine approaches are required. These should be based on reduction in load of virus infection, and need to be validated in animal models or in man. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Background: The fact that some cancers and viral infections can be controlled by effector CD8 T cells led to the possibility of utilising minimal CD8 T cell epitope peptides as vaccines. However using minimal CD8 T cell epitope peptide immunisations and a tumour protection model in mice, we have previously shown that functional memory CD8 T cells are not generated unless CD4 T help is provided at the time of CD8 T cell priming. Short-lived effector cells nevertheless are generated in the absence of T help. Aim: To determine the role of CD4 T help in multiple immunisations. Method: Minimal CD8 T cell peptides of HPV16 E7 protein and Ovalbumin were used (with adjuvants Quil-A or IFA) as immunogens in C57BL mice. The presence of effector CD8 T cells were determined by tumour protection assays and was quantified by IFN-gamma ELISPOT assays. Results: In the present study we show that unless T help is provided at the time CD8 T cells are primed, no CD8 effector cells are generated when boosted with the vaccine again in the absence of T help. Our results further show that this failure could be prevented by the inclusion of a T helper peptide during the primary or booster immunisations.
Resumo:
Prophylactic vaccines for genital human papillomavirus (HPV) infection have been shown to be feasible in animal models, and suitable vaccine material based on virus-like particles can be produced in bulk at reasonable cost. Initiation of phase III clinical trials will follow definition of trial outcome measures through further epidemiological studies, and development-of assays of host protective immunity. Vaccines could in principle eliminate HPV-related disease, as the human race is the only natural host for the relevant papillomaviruses (PVs). Therapeutic vaccines for genital HPV infection are also possible, but have not yet been demonstrated as feasible in practice because the choice of vaccine antigens is difficult, the method of their optimal delivery is uncertain, and the nature of the relevant antiviral immunity is unknown. PV species specificity will require trials to be conducted in man, which will slow definition of an ideal vaccine.
Resumo:
Schistosoma mansoni masks its surface with adsorbed host proteins including erythrocyte antigens, immunoglobulins, major histocompatibility complex class I, and beta (2)-microglobulin (beta (2)m), presumably as a means of avoiding host immune responses, How this is accomplished has not been explained. To identify surface receptors for host proteins, we biotinylated the tegument of live S, mansoni adults and mechanically transformed schistosomula and then removed the parasite surface with detergent, Incubation of biotinylated schistosome surface extracts witt l human immunoglobulin G (IgG) Fc-Sepharose resulted in purification of a 97-kDa protein that was subsequently identified as paramyosin (Pmy), using antiserum specific for recombinant Pmy, Fc also bound recombinant S. mansoni Pmy and native S. japonicum Pmy, Antiserum to Pmy decreased the binding of Pmy to Fc-Sepharose, and no proteins bound after removal of Pmy from extracts. Fluoresceinated human Fe bound to the surface, vestigial penetration glands, and nascent oral cavity of mechanically transformed schistosomula, and rabbit anti-Pmy Fab fragments ablated the binding of Fc to the schistosome surface, Pmy coprecipitated with host IgG from parasite surface extracts, indicating that complexes formed on the parasite surface as well as in vitro. Binding of Pmy to Fe was not inhibited by soluble protein A, suggesting that Pmy does not bind to the region between the CH2 and CH3 domains used by many other Fc-binding proteins. beta (2)m did not bind to the schistosome Fc receptor (Pmy), a finding that contradicts reports from earlier workers but did bind to a heteromultimer of labeled schistosomula surface proteins, This is the first report of the molecular identity of a schistosome Fc receptor; moreover it demonstrates an additional aspect of the unusual and multifunctional properties of Pmy from schistosomes and other parasitic flatworms.
Resumo:
Schistosomiasis japonica is a serious communicable disease and a major disease risk for more than 30 million people living in the tropical and subtropical zones of China. Infection remains a major public health concern despite 45 years of intensive control efforts. It is estimated that 865, 000 people and 100,250 bovines are today infected in the provinces where the disease is endemic, and its transmission continues. Unlike tire other schistosome species known to infect humans, the oriental schistosome, Schistosoma japonicum, is a true zoonotic organism, with a range of mammalian reservoirs, making control efforts extremely difficult. Clinical features of schistosomiasis range from fever; headache, and lethargy to severe fibro-obstructive pathology leading to portal hypertension, ascites, and hepatosplenomegaly, which can cause premature death. Infected children ale stunted and have cognitive defects impairing memory and learning ability. Current control programs are heavily based on community chemotherapy with a single dose of the drug praziquantel, but vaccines (for use in bovines and humans) in combination with other control strategies ale needed to make elimination of the disease possible. In this article, we provide an overview of the biology, epidemiology clinical features, and prospects for cona ol of oriental schistosomiasis in the People's Republic of China.
Resumo:
Treatment of human cancers with an inherent antigen-processing defect due to a loss of peptide transporters (TAP-1 and TAP-2) and/or MHC class I antigen expression remains a considerable challenge. There is now an increasing realization that tumor cells with down-regulated expression of TAP and/or MHC class I antigens display strong resistance to cytotoxic T lymphocyte (CTL)mediated immune control, and often fail to respond to the conventional immunotherapeutic protocols based on active immunization with tumor-associated epitopes (TAE) or adoptive transfer of tumor-specific T cells, In the present study, we describe a novel approach based on immunization with either genetically modified tumor cells or naked DNA vectors encoding TAE fused to an endoplasmic reticulum (ER) signal sequence (ER-TAE) which affords protection against challenge by melanoma cells with down-regulated expression of TAP-1/2 and MHC class I antigens. In contrast, animals immunized with a vaccine based on TAE alone showed no protection against tumor challenge. Although MHC-peptide tetramer analysis showed a similar frequency of antigen-specific CTL in both ER-TAE- and TAE-immunized mice, functional analysis revealed that CTL activated following immunization with ER-TAE displayed significantly higher avidity for TAE when compared to animals immunized with the TAE alone, These observations provide a new strategy in anti-cancer vaccine design that allows activation of a highly effective and well-defined CTL response against tumors with down-regulated expression of TAP and MHC class I antigens.