132 resultados para PRESSURE VOLUMETRIC PROPERTIES
Resumo:
One cause of congenital lactic acidosis is a mutation in the E1 alpha -subunit of the pyruvate dehydrogenase multienzyme complex. Little is known about the consequences of these mutations at the enzymatic level. Here we study the A199T mutation by expressing the protein in Escherichia coil. The specific activity is 25% of normal and the K-m for pyruvate is elevated by 10-fold. Inhibitors of lactate dehydrogenase might be a useful therapy for patients with such mutations. (C) 2001 Academic Press.
Resumo:
A new addition to the family of single-molecule magnets is reported: an Fete cage stabilized with benzoate and pyridonate ligands. Monte Carlo methods have been used to derive exchange parameters within the cage, and hence model susceptibility behavior.
Resumo:
The electromechanical transfer characteristics of adhesively bonded piezoelectric sensors are investigated. By the use of dynamic piezoelectricity theory, Mindlin plate theory for flexural wave propagation, and a multiple integral transform method, the frequency-response functions of piezoelectric sensors with and without backing materials are developed and the pressure-voltage transduction functions of the sensors calculated. The corresponding simulation results show that the sensitivity of the sensors is not only dependent on the sensors' inherent features, such as piezoelectric properties and geometry, but also on local characteristics of the tested structures and the admittance and impedance of the attached electrical circuit. It is also demonstrated that the simplified rigid mass sensor model can be used to analyze successfully the sensitivity of the sensor at low frequencies, but that the dynamic piezoelectric continuum model has to be used for higher frequencies, especially around the resonance frequency of the coupled sensor-structure vibration system.
Resumo:
Rectangular piezoceramic transducers are widely used in ultrasonic evaluation and health monitoring techniques and structural vibration control applications. In this paper the flexural waves excited by rectangular transducers adhesively attached to isotropic plates are investigated. In view of the difficulties in developing accurate analytical models describing the transfer characteristics of the transducer due to the complex electromechanical transduction processes and transducer-structure interactions involved, a combined theoretical-experimental approach is developed. A multiple integral transform method is used to describe the propagation behaviour of the waves in the plates, while a heterodyne Doppler laser vibrometer is employed as a non-contact receiver device. This combined theoretical-experimental approach enables the efficient characterization of the electromechanical transfer properties of the piezoelectric transducer which is essential for the development of optimized non-destructive evaluation systems. The results show that the assumption of a uniform contact pressure distribution between the transducer and the plate can accurately predict the frequency spectrum and time domain response signals of the propagating waves along the main axes of the rectangular transmitter element.
Resumo:
The structure of the product from the free radical bulk copolymerization of methyl methacrylate (MMA) and allyl acetate (AAc) was investigated. The mole fraction of AAc plays an important role in the copolymerization of these two monomers. Molecular weight (MW) and molecular weight distribution (MWD) are completely altered when the feed composition is dominantly AAc. NMR spectroscopy confirmed the incorporation of AAc into the polymer. However, no allyl-allyl linkages were observed at low conversions. T-g was found to be affected by the incorporation of AAc into the polymer. (C) 2001 Society of Chemical Industry.
Resumo:
The three Australian-endemic species comprising the genus Aresehougia have been examined to determine the structure of their nonfibrillar wall components. The polysaccharide extracted from the most widely distributed species, A. congesta (Turner) J. Agardh, was shown by compositional analyses, Fourier transform infrared (FTIR) spectroscopy, linkage analysis, and C-13-NMR spectroscopy to be a carrageenan composed predominantly of the repeating disaccharides 6'-O-methylcarrabiose 2,4'-disulfate, carrabiose 2,4-disulfate (the repeating unit of L-carrageenan), 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate, and 6'-O-methylcarrabiose 2-sulfate. The carrageenan also contained small amounts of 4-linked Galp residues, some bearing methyl ether substitution at O-3 and some possibly bearing sulfate ester and/or glycosyl substitutions at O-3. The A. congesta carrageenan had unique rheological properties, its gels having some similarities to those of commercial iota -carrageenan but with the viscosity of commercial lambda -carrageenan. Polysaccharides from A. ligulata Harvey ex J. Agardh and A. stuartii Harvey were shown by constituent sugar and FTIR analyses to be sulfated galactans rich in mono-O-methylgalactose. The carrageenan structures of Areschougia spp. were consistent with those of the genera Rhabdonia, Erythroclonium, and Austroclonium, the other genera constituting the family Areschougiaceae.
Briefing: Factored material properties and limit state loads-unlikely extreme or impossible pretense
Resumo:
In the limit state design (LSD) method each design criterion is formally stated and assessed using a performance function. The performance function defines the relationship between the design parameters and the design criterion. In practice, LSD involves factoring up loads and factoring down calculated strengths and material parameters. This provides a convenient way to carry out routine probabilistic-based design. The factors are statistically calculated to produce a design with an acceptably low probability of failure. Hence the ultimate load and the design material properties are mathematical concepts that have no physical interpretation. They may be physically impossible. Similarly, the appropriate analysis model is also defined by the performance function and may not describe the real behaviour at the perceived physical equivalent limit condition. These points must be understood to avoid confusion in the discussion and application of partial factor LSD methods.
Resumo:
The purpose of this experiment was to assess the test-retest reliability of input-output parameters of the cortico-spinal pathway derived from transcranial magnetic (TMS) and electrical (TES) stimulation at rest and during muscle contraction. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of eight individuals on three separate days. The intensity of TMS at rest was varied from 5% below threshold to the maximal output of the stimulator. During trials in which the muscle was active, TMS and TES intensities were selected that elicited MEPs of between 150 and 300 X at rest. MEPs were evoked while the participants exerted torques up to 50% of their maximum capacity. The relationship between MEP size and stimulus intensity at rest was sigmoidal (R-2 = 0.97). Intra-class correlation coefficients (ICC) ranged between 0.47 and 0.81 for the parameters of the sigmoid function. For the active trials, the slope and intercept of regression equations of MEP size on level of background contraction were obtained more reliably for TES (ICC = 0.63 and 0.78, respectively) than for TMS (ICC = 0.50 and 0.53, respectively), These results suggest that input-output parameters of the cortico-spinal pathway may be reliably obtained via transcranial stimulation during longitudinal investigations of cortico-spinal plasticity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Initial experiments were conducted using an in situ rat tibialis anterior (TA) muscle preparation to assess the influence of dietary antioxidants on muscle contractile properties. Adult Sprague-Dawley rats were divided into two dietary groups: 1) control diet (Con) and 2) supplemented with vitamin E (VE) and alpha -lipoic acid (alpha -LA) (Antiox). Antiox rats were fed the Con rats' diet (AIN-93M) with an additional 10,000 IU VE/kg diet and 1.65 g/kg alpha -LA. After an 8-wk feeding period, no differences existed (P > 0.05) between the two dietary groups in maximum specific tension before or after a fatigue protocol or in force production during the fatigue protocol. However, in unfatigued muscle, maximal twitch tension and tetanic force production at stimulation frequencies less than or equal to 40 Hz were less (P < 0.05) in Antiox animals compared with Con. To investigate which antioxidant was responsible for the depressed force production, a second experiment was conducted using an in vitro rat diaphragm preparation. Varying concentrations of VE and dihydrolipoic acid, the reduced form of -LA, were added either individually or in combination to baths containing diaphragm muscle strips. The results from these experiments indicate that high levels of VE depress skeletal muscle force production at low stimulation frequencies.
Resumo:
Several members of the Rubiaceae and Violaceae families produce a series of cycloticles or macrocyclic peptides of 29-31 amino acids with an embedded cystine knot. We aim to understand the mechanism of synthesis of cyclic peptides in plants and have isolated a cDNA clone that encodes the cyclotide kalata Ell as well as three other clones for related cycloticles from the African plant Olden-landia affinis. The cDNA clones encode prepropeptides with a 20-aa signal sequence, an N-terminal prosequence of 46-68 amino acids and one, two, or three cyclotide domains separated by regions of about 25 aa. The corresponding cycloticles have been isolated from plant material, indicating that the cyclotide domains are excised and cyclized from all four predicted precursor proteins. The exact processing site is likely to lie on the N-terminal side of the strongly conserved GlyLeuPro or SerLeuPro sequence that flanks both sides of the cyclotide domain. Cyclotides have previously been assigned an antimicrobial function; here we describe a potent inhibitory effect on the growth and development of larvae from the Lepidopteran species Helicoverpa punctigera.
Resumo:
Despite their limitations, linear filter models continue to be used to simulate the receptive field properties of cortical simple cells. For theoreticians interested in large scale models of visual cortex, a family of self-similar filters represents a convenient way in which to characterise simple cells in one basic model. This paper reviews research on the suitability of such models, and goes on to advance biologically motivated reasons for adopting a particular group of models in preference to all others. In particular, the paper describes why the Gabor model, so often used in network simulations, should be dropped in favour of a Cauchy model, both on the grounds of frequency response and mutual filter orthogonality.
Resumo:
Expansion tubes operating at total flow enthalpies of 100 MJ kg(-1) or more have characteristical test times of 30-50 mus. Under these conditions, the response time of the Pitot pressure measuring device is critical when performing flow calibration studies. The conventional technique of using a commercial pressure transducer protected by shielding has not always proven to be effective, due to the relatively large (and variable) response time caused by the shielding. A device called the stress wave bar gauge has been designed and calibrated and shown to be an effective way to measure the Pitot pressure with a response time of only 2-3 mus.
Resumo:
We recently demonstrated that suppressed bone remodeling allows microdamage to accumulate and causes reductions in some mechanical properties. However, in our previous study, I year treatment with high-dose etidronate (EHDP) did not increase microdamage accumulation in most skeletal sites of dogs in spite of complete remodeling suppression and the occurrence of spontaneous fractures of ribs and/or thoracic spinous processes. This study evaluates the effects of EHDP on microdamage accumulation and biomechanical properties before fractures occur. Thirty-six female beagles, 1-2 years old, were treated daily for 7 months with subcutaneous injections of saline vehicle (CNT) or EHDP at 0.5 (E-low) or 5 mg/kg per day (E-high). After killing, bone mineral measurement, histomorphometry, microdamage analysis, and biomechanical testing were performed. EHDP treatment suppressed intracortical and trabecular remodeling by 60%-75% at the lower dose, and by 100% at the higher dose. Osteoid accumulation caused by a mineralization deficit occurred only in the E-high group, and this led to a reduction of mineralized bone mass. Microdamage accumulation increased significantly by two- to fivefold in the rib, lumbar vertebra, ilium, and thoracic spinous process in E-low, and by twofold in the lumbar vertebra and ilium in E-high. However, no significant increase in damage accumulation was observed in ribs or thoracic spinous processes in E-high where fractures occur following 12 months of treatment. Mechanical properties of lumbar vertebrae and thoracic spinous processes were reduced significantly in both E-low and E-high. These findings suggest that suppression of bone remodeling by EHDP allows microdamage accumulation, but that osteoid accumulation reduces production of microdamage. (Bone 29:271-278; 2001) (C) 2001 by Elsevier Science Inc. All rights reserved.
Resumo:
We recently demonstrated that suppression of bone remodeling allows microdamage to accumulate, leading to reduced bone toughness in the rib cortex of dogs. This study evaluates the effects of reduced bone turnover produced by bisphosphonates on microdamage accumulation and biomechanical properties at clinically relevant skeletal sites in the same dogs. Thirty-six female beagles, 1-2 years old, were divided into three groups. The control group was treated daily for 12 months with saline vehicle (CNT), The remaining two groups were treated daily with risedronate at a dose of 0.5 mg/kg per day (RIS), or alendronate at 1.0 mg/kg per day (ALN) orally, The doses of these bisphosphonates were six times the clinical doses approved for treatment of osteoporosis in humans. After killing, the L-1 vertebra was scanned by dual-energy X-ray absorptiometry (DXA), and the L-2 vertebra and right ilium were assigned to histomorphometry, The L-3 vertebra, left ilium, Th-2 spinous process, and right femoral neck were used for microdamage analysis. The L-4 vertebra and Th-1 spinous process were mechanically tested to failure in compression and shear, respectively. One year treatment with risedronate or alendronate significantly suppressed trabecular remodeling in vertebrae (RIS 90%, ALN 95%) and ilium (RIS 76%, ALN 90%) without impairment of mineralization, and significantly increased microdamage accumulation in all skeletal sites measured. Trabecular bone volume and vertebral strength increased significantly following 12 month treatment. However, normalized toughness of the L-4 vertebra was reduced by 21% in both RIS (p = 0.06) and ALN (p = 0.05) groups. When the two bisphosphonate groups were pooled in a post hoc fashion for analysis, this reduction in toughness reached statistical significance (p = 0.02), This study demonstrates that suppression of trabecular bone turnover by high doses of bisphosphonates is associated with increased vertebral strength, even though there is significant microdamage accumulation and a reduction in the intrinsic energy absorption capacity of trabecular bone. (C) 2001 by Elsevier Science Inc. All rights reserved.
Resumo:
Recent progress in the production, purification, and experimental and theoretical investigations of carbon nanotubes for hydrogen storage are reviewed. From the industrial point of view, the chemical vapor deposition process has shown advantages over laser ablation and electric-arc-discharge methods. The ultimate goal in nanotube synthesis should be to gain control over geometrical aspects of nanotubes, such as location and orientation, and the atomic structure of nanotubes, including helicity and diameter. There is currently no effective and simple purification procedure that fulfills all requirements for processing carbon nanotubes. Purification is still the bottleneck for technical applications, especially where large amounts of material are required. Although the alkali-metal-doped carbon nanotubes showed high H-2 Weight uptake, further investigations indicated that some of this uptake was due to water rather than hydrogen. This discovery indicates a potential source of error in evaluation of the storage capacity of doped carbon nanotubes. Nevertheless, currently available single-wall nanotubes yield a hydrogen uptake value near 4 wt% under moderate pressure and room temperature. A further 50% increase is needed to meet U.S. Department of Energy targets for commercial exploitation. Meeting this target will require combining experimental and theoretical efforts to achieve a full understanding of the adsorption process, so that the uptake can be rationally optimized to commercially attractive levels. Large-scale production and purification of carbon nanotubes and remarkable improvement of H-2 storage capacity in carbon nanotubes represent significant technological and theoretical challenges in the years to come.