189 resultados para Differential Responses
Resumo:
The inhibition of recombinant CYP1A1 and CYP1A2 activity by quinidine and quinine was evluated using ethoxyresorufin O -deethylation, phenacetin O -deethylation and propranolol desisopropylation as probe catalytic pathways. 2. With substrate concentrations near the K m of catalysis, both quinidine and quinine potently inhibited CYP1A1 activity with [ I ] 0.5 ~ 1-3 μM, whereas in contrast, there was little inhibition of CYP1A2 activity. The Lineweaver-Burk plots with varying inhibitor concentrations suggested that inhibition by quinidine and quinine was competitive. 3. There was only trace metabolism of quinidine by recombinant CYP1A1, whereas rat liver microsomes as a control showed extensive consumption of quinidine and metabolite production. 4. This work suggests that quinidine is a non-classical inhibitor of CYP1A1 and that it is not as highly specific at inhibiting CYP2D6 as previously thought.
Resumo:
The presence of vesicular-arbuscular mycorrhizal (VAM) fungi in long-term cane-growing fields associated with yield decline led to the supposition that VAM fungi may be responsible for the poor yields. A glasshouse trial was established to test the effectiveness of a species of VAM fungi, Glomus clarum, extracted from one of these North Queensland fields on the growth of sugarcane (Saccharum interspecific hybrid), maize (Zea mays), and soybean (Glycine max) for 6 phosphorus (P) rates (0, 2.7, 8.2, 25, 74, 222 mg/kg). For maize and soybean plants that received VAM (+ VAM), root colonisation was associated with enhanced P uptake, improved dry weight (DW) production, and higher index tissue-P concentrations than those without VAM (-VAM). By comparing DW responses of maize and soybean for different P rates, savings in fertiliser P of up to 160 and 213 kg/ha, respectively, were realised. Sugarcane plants were generally less responsive. Apart from a 30% DW increase with VAM when 2.7 mg P/kg was added, DW of +VAM plants was equivalent to, or worse than in the case of 222 mg P/kg, DW of -VAM plants. For all 3 host species, colonisation was least at the highest P application, presumably from excessive P within the plant tissue. Critical P concentrations for the 3 host species were below those reported elsewhere, and for soybean and sugarcane, the critical concentration for +VAM plants was lower than that of -VAM plants. There are 3 implications that arise from this study. First, VAM fungi present in cane-growing soils can promote the growth of maize and soybean, which are potential rotation crops, over a range of P levels. Second, the mycorrhizal strain taken from this site did not generally contribute to a yield decline in sugarcane plants. Third, application of P fertiliser is not necessary for sugarcane when acid-extractable P is
Resumo:
Mutations in the ATM gene lead to the genetic disorder ataxia-telangiectasia. ATM encodes a protein kinase that is mainly distributed in the nucleus of proliferating cells. Recent studies reveal that ATM regulates multiple cell cycle checkpoints by phosphorylating different targets at different stages of the cell cycle. ATM also functions in the regulation of DNA repair and apoptosis, suggesting that it is a central regulator of responses to DNA double-strand breaks.
Resumo:
Performance in sprint exercise is determined by the ability to accelerate, the magnitude of maximal velocity and the ability to maintain velocity against the onset of fatigue. These factors are strongly influenced by metabolic and anthropometric components. Improved temporal sequencing of muscle activation and/or improved fast twitch fibre recruitment may contribute to superior sprint performance. Speed of impulse transmission along the motor axon may also have implications on sprint performance. Nerve conduction velocity (NCV) has been shown to increase in response to a period of sprint training. However, it is difficult to determine if increased NCV is likely to contribute to improved sprint performance. An increase in motoneuron excitability, as measured by the Hoffman reflex (H-reflex), has been reported to produce a more powerful muscular contraction, hence maximising motoneuron excitability would be expected to benefit sprint performance. Motoneuron excitability can be raised acutely by an appropriate stimulus with obvious implications for sprint performance. However, at rest reflex has been reported to be lower in athletes trained for explosive events compared with endurance-trained athletes. This may be caused by the relatively high, fast twitch fibre percentage and the consequent high activation thresholds of such motor units in power-trained populations. In contrast, stretch reflexes appear to be enhanced in sprint athletes possibly because of increased muscle spindle sensitivity as a result of sprint training. With muscle in a contracted state, however, there is evidence to suggest greater reflex potentiation among both sprint and resistance-trained populations compared with controls. Again this may be indicative of the predominant types of motor units in these populations, but may also mean an enhanced reflex contribution to force production during running in sprint-trained athletes. Fatigue of neural origin both during and following sprint exercise has implications with respect to optimising training frequency and volume. Research suggests athletes are unable to maintain maximal firing frequencies for the full duration of, for example, a 100m sprint. Fatigue after a single training session may also have a neural manifestation with some athletes unable to voluntarily fully activate muscle or experiencing stretch reflex inhibition after heavy training. This may occur in conjunction with muscle damage. Research investigating the neural influences on sprint performance is limited. Further longitudinal research is necessary to improve our understanding of neural factors that contribute to training-induced improvements in sprint performance.
Resumo:
Despite their limitations, linear filter models continue to be used to simulate the receptive field properties of cortical simple cells. For theoreticians interested in large scale models of visual cortex, a family of self-similar filters represents a convenient way in which to characterise simple cells in one basic model. This paper reviews research on the suitability of such models, and goes on to advance biologically motivated reasons for adopting a particular group of models in preference to all others. In particular, the paper describes why the Gabor model, so often used in network simulations, should be dropped in favour of a Cauchy model, both on the grounds of frequency response and mutual filter orthogonality.
Resumo:
A frequently desired outcome when rehabilitating Zn toxic sites in Australia is to establish a self-sustaining native ecosystem. Hence, it is important to understand the tolerance of Australian native plants to high concentrations of Zn. Very little is known about the responses of Australian native plants, and trees in particular, to toxic concentrations of Zn. Acacia holosericea, Eucalyptus camaldulensis and Melaleuca leucadendra plants were grown in dilute solution culture for 10 weeks. The seedlings (42 days old) were exposed to six Zn treatments viz., 0.5, 5, 10, 25, 50 and 100 muM. The order of tolerance to toxic concentrations of Zn was E. camaldulensis > A. holosericea > M. leucadendra, the critical external concentrations being approximately 20, 12 and 1.5 muM, respectively. Tissue Zn concentrations increased as solution Zn increased for all species. Root tissue concentrations were higher than shoot tissue concentrations at all solution Zn concentrations. The critical tissue Zn concentrations were approximately 85 and 110 mug g(-1) DM for M. leucadendra, 115 and 155 mug g(-1) DM for A. holosericea and 415 and 370 mug g(-1) DM for E. camaldulensis for the youngest fully expanded leaf and total shoots, respectively. The results from this paper provide the first comprehensive combination of growth responses, critical external concentrations, critical tissue concentrations and plant toxicity symptoms for three important Australian genera, viz., Eucalyptus, Acacia and Melaleuca, for use in the rehabilitation of potentially Zn toxic sites.
Resumo:
Mice transgenic for E6/E7 oncogenes of Human Papillomavirus type 16 display life-long expression of E6 in lens and skin epithelium, and develop inflammatory skin disease late in life, which progresses to papillomata and squamous carcinoma in some mice. We asked whether endogenous expression of E6 induced a specific immunological outcome, i.e. immunity or tolerance, or whether the mice remained immunologically naive to E6. We show that prior to the onset of skin disease, E6 transgenic mice did not develop a spontaneous E6-directed antibody response, nor did they display T-cell proliferative responses to dominant T-helper epitope peptides within E6. In contrast, old mice in which skin disease had arisen, developed antibodies to E6. We also show that following immunisation with E6, specific antibody responses did not differ significantly among groups of EB-transgenic mice of different ages (and therefore of different durations and amounts of exposure to endogenous E6), and non-transgenic controls. Additionally, E6 immunisation-induced T-cell proliferative responses were similar in E6-transgenic and non-transgenic mice. These data are consistent with the interpretation that unimmunised Eb-transgenic mice that have not developed inflammatory skin disease remain immunologically naive to E6 at the B- and Th levels. There are implications for E6-mediated tumorigenesis in humans, and for the development of putative E6 therapeutic vaccines. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The E7 oncoprotein of human papillomavirus 16 (HPV16) transforms basal and suprabasal cervical epithelial cells and is a tumor-specific antigen in cervical carcinoma, to which immunotherapeutic strategies aimed at cytotoxic T-lymphocyte (CTL) induction are currently directed. By quantifying major histocompatibility complex class I tetramer-binding T cells and CTL in mice expressing an HPV16 E7 transgene from the keratin-l l (K14) promoter in basal and suprabasal keratinocytes and in thymic cortical epithelium, we show that antigen responsiveness of both E7- and non-E7-specific CD8(+) cells is down-regulation compared to non-E7 transgenic control mice. We show that the effect is specific for E7, and not another transgene, expressed from the K14 promoter, Down-regulation did not involve deletion of CD8(+) T cells of high affinity or high avidity, and T-cell receptor (TCR) VP-chain usage and TCR receptor density were similar in antigen-responsive cells from E7 transgenic and non-E7 transgenic mice. These data indicate that E7 expressed chronically from the K14 promoter nonspecifically down-regulates CD8+ T-cell responses. The in vitro data correlated with the failure of immunized E7 transgenic mice to control the growth of an E7-expressing tumor challenge, We have previously shown that E7-directed CTL down-regulation correlates with E7 expression in peripheral but not thymic epithelium (T, Dean et al., J, Virol. 73:6166-6170, 1999), The findings have implications for the immunological consequences of E7-expressing tumor development and E7-directed immunization strategies. Generically, the findings illustrate a T-cell immunomodulatory function for a virally encoded human oncoprotein.
Resumo:
This paper presents the comparison of surface diffusivities of hydrocarbons in activated carbon. The surface diffusivities are obtained from the analysis of kinetic data collected using three different kinetics methods- the constant molar flow, the differential adsorption bed and the differential permeation methods. In general the values of surface diffusivity obtained by these methods agree with each other, and it is found that the surface diffusivity increases very fast with loading. Such a fast increase can not be accounted for by a thermodynamic Darken factor, and the surface heterogeneity only partially accounts for the fast rise of surface diffusivity versus loading. Surface diffusivities of methane, ethane, propane, n-butane, n-hexane, benzene and ethanol on activated carbon are reported in this paper.
Resumo:
The potential for the ethylene binding inhibitor, 1-methylcyclopropene, to delay ripening of 'Hass' avocado, 'African Pride' custard apple, 'Kensington Pride' mango and 'Solo' papaya was examined. Fruit were gassed with 25 muL/L 1-methylcyclopropene for 14 h at 20 degreesC, followed by treatment with 100 muL/L ethylene for 24 h, and then ripened at 20 degreesC. Ethylene treatment alone generally halved the number of days for fruit to reach the ripe stage, compared with untreated fruit. 1-Methylcyclopropene treatment alone increased the number of days to ripening by 4.4 days (40% increase), 3.4 days (58%), 5.1 days (37%) and 15.6 days (325%) for avocado, custard apple, mango and papaya, respectively, compared with untreated fruit. Applying 1-methylcyclopropene to the fruit before ethylene prevented the accelerated ripening normally associated with ethylene treatment, so that the number of days to ripening for fruit treated with 1-methylcyclopropene plus ethylene was similar to the number of days to ripening for fruit treated with 1-methylcyclopropene alone. 1-Methylcyclopropene treatment was associated with slightly higher severity of external blemishes in papaya and custard apple, slightly higher rots severity in avocado, custard apple and papaya, and at least double the severity of stem rots in mango, relative to fruit not treated with 1-methylcyclopropene. Thus, 1-methylcyclopropene treatment has the potential to reduce the risk of premature ripening of avocado, custard apple, mango and papaya fruit due to accidental exposure to ethylene. However, additional precautions may be necessary to reduce disease severity associated with 1-methylcyclopropene treatment.
Resumo:
Changes in trunk muscle recruitment have been identified in people with low-back pain (LBP). These differences may be due to changes in the planning of the motor response or due to delayed transmission of the descending motor command in the nervous system. These two possibilities were investigated by comparison of the effect of task complexity on the feedforward postural response of the trunk muscles associated with rapid arm movement in people with and without LBP. Task complexity was increased by variation of the expectation for a command to either abduct or flex the upper limb. The onsets of electromyographic activity (EMG) of the abdominal and deltoid muscles were measured. In control subjects, while the reaction time of deltoid and the superficial abdominal muscles increased with task complexity, the reaction time of transversus abdominis (TrA) was constant. However, in subjects with LBP, the reaction time of TrA increased along with the other muscles as task complexity was increased. While inhibition of the descending motor command cannot be excluded, it is more likely that the change in recruitment M of TrA represents a more complex change in organisation of the postural response.
Resumo:
HLA-A*0201 transgenic, H-2D(b)/mouse beta2-microglobulin double-knockout mice were used to compare and optimize the immunogenic potential of 17HIV 1-derived, HLA-A0201-restricted epitopic peptides. A tyrosine substitution in position 1 of the epitopic peptides, which increases both their affinity for and their HLA-A0201 molecule stabilizing capacity, was introduced in a significant proportion, having verified that such modifications enhance their immunogenicity in respect of their natural antigenicity. Based on these results, a 13-polyepitope construct was inserted in the pre-S2 segment of the hepatitis B middle glycoprotein and used for DNA immunization. Long-lasting CTL responses against most of the inserted epitopes could be elicited simultaneously in a single animal with cross-recognition in several cases of their most common natural variants.