118 resultados para Somatic Embryos
Resumo:
The homeotic genes are instrumental in establishing segment-specific characteristics. In Drosophila embryos there is ample evidence that the homeotic genes are involved in establishing the differences in the pattern of sense organs between segments. The chordotonal organs are compound sense organs made up of several stretch receptive sensilla. A set of serially homologous chordotonal organs, Ich3 in the 1(st) thoracic segment, dch3 in the 2(nd) and 3(rd) thoracic segments and Ich5 in abdominal segments 1 to 7, is composed of different numbers of sensilla with different positions and orientations. Here we examine this set of sense organs and a companion set, vchA/B and vch 1, in the wild type and mutants for Sex combs reduced, Antennapedia, Ultrabithorax, and abdominal-A, using immunostaining. Mutant phenotypes indicate that Ultrabithorax and abdominal-A in particular influence the formation of these sense organs. Differential expression of abdominal-A and Ultrabithorax within compartments of individual parasegments can precisely modulate the types of sense organs that will arise from a segment.
Resumo:
Two of the best understood somatic cell mRNA cytoplasmic trafficking elements are those governing localization of beta-actin and myelin basic protein mRNAs. These cis-acting elements bind the trans-acting factors fibroblast ZBP-1 and hnRNP A2, respectively. It is not known whether these elements fulfil other roles in mRNA metabolism. To address this question we have used Edman sequencing and western blotting to identify six rat brain proteins that bind the beta-actin element (zipcode). All are known RNA-binding proteins and differ from ZBP-1. Comparison with proteins that bind the hnRNP A2 and AU-rich response elements, A2RE/A2RE11 and AURE, showed that AURE and zipcode bind a similar set of proteins that does not overlap with those that bind A2RE11. The zipcode-binding protein, KSRP, and hnRNP A2 were selected for further study and were shown by confocal immunolluorescence microscopy to have similar distributions in the central nervous system, but they were found in largely separate locations in cell nuclei. In the cytoplasm of cultured oligodendrocytes they were segregated into separate populations of cytoplasmic granules. We conclude that not only may there be families of trans-acting factors for the same cis-acting element, which are presumably required at different stages of mRNA processing and metabolism, but independent factors may also target different and multiple RNAs in the same cell.
Resumo:
The ultrastructural features of Macropodinium moiri were investigated. The somatic cortex is composed of two lateral non-ciliated zones covered with trapezoidal plates and separated by a trough-like dorsoventral groove (DVG) which divides the cell into left and right halves. The somatic kineties occupy the margins of the DVG and are composed of monokinetids whose infraciliature shows a typical litostome pattern. The pellicular plates are lamellate, and separated by V-shaped grooves which are lined by thick-walled vacuoles. The DVG cortex is composed of electron-opaque U-shaped ribs which alternate with electron-lucent saccular structures. The DVG surface is composed of small regular pellicular sacs built up to form the ridges of the dorsal DVG. The vestibulum forms a laterally compressed cone with left/right differentiation. The basal section of its non-ciliated right side is internally lined (outer to innermost) by longitudinal fibres, nematodesmata and transverse microtubular ribbons. The left side bears the vestibular kineties and in its basal section is lined (outer to innermost) by small nematodesmata and transverse tubules. Cytoplasmic organelles include endoplasmic reticulum, starch granules and a single contactile vacuole surrounded by patches of nephridioplasm. Hydrogenosomes are absent and coccoid Gram-positive bacteria lie under the ciliated portions of the cell. This set of characteristics differs significantly from those of the all other trichostomes; Macropodiniidae is therefore designated Trichostomatia incertae sedis. A revised familial diagnosis of the Macropodiniidae is proposed.
Resumo:
The ultrastructural features of the holotrichous ciliates inhabiting macropodid maruspials were investigated to resolve their morphological similarity to other trichostome ciliates with observed differences in their small subunit rRNA gene sequences. The ultrastructure of Amylovorax dehorityi nov. comb. (formerly Dasytricha dehorityi) was determined by transmission electron microscopy. The somatic kineties are composed of monokinetids whose microtubules show a typical litostome pattern. The somatic cortex is composed of ridges which separate kinety rows, granular ectoplasm and a basal layer of hydrogenosomes lining the tela corticalis. The vestibulum is an invagination of the pellicle lined down one side with kineties (invaginated extensions of the somatic kineties); transverse tubules line the surface of the vestibulum and small nematodesmata surround it forming a cone-like network of struts. Cytoplasmic organelles include hydrogenosomes, irregularly shaped contractile vacuoles surrounded by a sparse spongioplasm, food vacuoles containing bacteria and large numbers of starch granules. This set of characteristics differs sufficiently from those of isotrichids and members of the genus Dasytricha to justify the erection of a new genus (Amylovorax) and a new family (Amylovoracidae). Dasytricha dehorityi, D. dogieli and D. mundayi are reassigned to the new genus Amylovorax and a new species A. quokka is erected. While the gross morphological similarities between Amylovorax and Dasytricha may be explained by convergent evolution, ultrastructural features indicate that these two genera have probably diverged independently from haptorian ancestors by successive reduction of the cortical and vestibular support structures.
Resumo:
The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains similar to16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.
Resumo:
Available evidence suggests that there are at least two locations for dormancy mechanisms in primary dormant seeds: mechanisms based within the embryo covering structures, and mechanisms based within the embryo. Mechanisms within the covering structures may involve mechanical, permeability and chemical barriers to germination. Mechanisms within the embryo may involve the expression of certain genes, levels of certain plant growth regulators, the activity of important respiratory pathways or the mobilisation and utilisation of food reserves. In addition, some embryos may be too immature to germinate immediately and must undergo a further growth phase before germination is possible. An individual species could have one or several of these various dormancy mechanisms and these mechanisms need to be understood when selecting treatments to overcome dormancy. The way in which certain dormancy breaking agents are thought to work is discussed and practical applications of such agents in field situations are explained.
Resumo:
A successful embryo-rescue and culture protocol was developed for use with several indigenous Vigna species and mungbean cultivars grown in Australia. Germination of Vigna immature embryos and their subsequent development into plants was influenced by the time at which the embryos were isolated and by which medium additives were placed in the embryo-rescue medium. A medium containing MS basal nutrients with sucrose (88 mM), casein hydrolysate (500 mg L-1) and agar (8 g L-1) but devoid of plant-growth regulators was found to be the best for germination of immature embryos for all four Vigna species investigated. The protocol for successful germination of non-hybrid immature embryos was applied to the recovery of interspecific hybrids involving mungbean and five native Vigna species that had previously been found difficult to hybridise. Several putative hybrid plants were obtained including a confirmed interspecific cross between V. luteola (Jacq.) Benth and V. marina (Burm.) Merrill.
Resumo:
Purpose: The range of variability between individuals of the same chronological age (CA) in somatic and biological maturity is large and especially accentuated around the adolescent growth spurt. Maturity assessment is an important consideration when dealing with adolescents, from both a research perspective and youth sports stratification. A noninvasive, practical method predicting years from peak height velocity (a maturity offset value) by using anthropometric variables is developed in one sample and cross-validated in two different samples. Methods: Gender specific multiple regression equations were calculated on a sample of 152 Canadian children aged 8-16 yr (79 boys; 73 girls) who were followed through adolescence from 1991 to 1997, The equations included three somatic dimensions (height, sitting height, and leg length), CA, and their interactions. The equations were cross-validated on a Combined sample of Canadian (71 boys, 40 girls measured from 1964 through 1973) and Flemish children (50 boys, 48 girls measured from 1985 through 1999). Results: The coefficient of determination (R2) for the boys' model was 0.92 and for the girls' model 0.91 the SEEs were 0.49 and 0.50, respectively, Mean difference between actual and predicted maturity offset for the verification samples was 0.24 (SD 0.65) yr in boys and 0,001 (SD 0.68) yr in girls. Conclusion: Although the cross-validation meets statistical standards or acceptance, caution 1, warranted with regard to implementation. It is recommended that maturity offset be considered as a categorical rather than a continuous assessment. Nevertheless, the equations presented are a reliable, noninvasive and a practical solution for the measure of biological maturity for matching adolescent athletes.
Resumo:
The zebrafish has a number of distinct advantages as an experimental model in developmental biology. For example, large numbers of embryos can be generated in each lay, development proceeds rapidly through a very precise temporal staging which exhibits minimal batch-to-batch variability, embryos are transparent and imaging of wholemounts negates the need for tedious histological preparation while preserving three-dimensional spatial relationships. The zebrafish nervous system is proving a convenient model for studies of axon guidance because of its small size and highly stereotypical trajectory of axons. Moreover, a simple scaffold of axon tracts and nerves is established early and provides a template for subsequent development. The ease with which this template can be visualized as well as the ability to spatially resolve individual pioneer axons enables the role of specific cell-cell and molecular interactions to be clearly deciphered. We describe here the morphology and development of the earliest axon pathways in the embryonic zebrafish central nervous system and highlight the major questions that remain to be addressed with regard to axon guidance.
Resumo:
Cadherin cell-cell adhesion molecules are important determinants of morphogenesis and tissue patterning. C-cadherin plays a key role in the cell-upon-cell movements seen during Xenopus gastrulation. In particular, regulated changes in C-cadherin adhesion critically influence convergence-extension movements, thereby determining organization of the body plan. It is also predicted that remodelling of cadherin adhesive contacts is important for such cell-on-cell movements to occur. The recent demonstration that Epithelial (E-) cadherin is capable of undergoing endocytic trafficking to and from the cell surface presents a potential mechanism for rapid remodelling of such adhesive contacts. To test the potential role for C-cadherin endocytosis during convergence-extension, we expressed in early Xenopus embryos a dominantly-inhibitory mutant of the GTPase, dynamin, a key regulator of clathrin-mediated endocytosis. We report that this dynamin mutant significantly blocked the elongation of animal cap explants in response to activin, accompanied by inhibition of C-cadherin endocytosis. We propose that dynamin-dependent endocytosis of C-cadherin plays an important role in remodelling adhesive contacts during convergence-extension movements in the early Xenopus embryo.
Resumo:
hlx1 is a related homeobox gene expressed in a dynamic spatiotemporal expression pattern during development of the zebrafish brain. The homologues of hlx1, mouse dbx1 and Xenopus Xdbx, are known to play a role in the specification of neurons in the spinal cord. However, the role of these molecules in the brain is less well known. We have used two different approaches to elucidate a putative function for hlx1 in the developing zebrafish brain. Blastomeres were injected with either synthetic hlx1 mRNA in gain-of-function experiments or with antisense morpholino oligonucleotides directed against hlx1 in loss-of-function experiments. Mis-expression of hlx1 produced severe defects in brain morphogenesis as a result of abnormal ventricle formation, a phenotype we referred to as fused-brain. These animals also showed a reduction in the size of forebrain neuronal clusters as well as abnormal axon pathfinding. hlx1 antisense morpholinos specifically perturbed hindbrain morphogenesis leading to defects in the integrity of the neuroepithelium. While hindbrain patterning was in the most part unaffected there were select disruptions to the expression pattern of the neurogenic gene Zash1B in specific rhombomeres. Our results indicate multiple roles for hlx1 during zebrafish brain morphogenesis.
Resumo:
In this paper, I describe my journey through a field of research in which I have been involved for some years - lipolysis in milk and dairy products. While I call it my journey, I have had many fellow travellers who have helped me along the way. These have been my research colleagues and collaborators, and, since I joined the University of Queensland, my students. The research has covered a variety of aspects but I have chosen to describe only a selection of these.
Resumo:
The use of electrotransfer for DNA delivery to prokaryotic cells, and eukaryotic cells in vitro, has been well known and widely used for many years. However, it is only recently that electric fields have been used to enhance DNA transfer to animal cells in vivo, and this is known as DNA electrotransfer or in vivo DNA electroporation. Some of the advantages of this method of somatic cell gene transfer are that it is a simple method that can be used to transfer almost any DNA construct to animal cells and tissues in vivo; multiple constructs can be co-transfected; it is equally applicable to dividing and nondividing cells; the DNA of interest does not need to be subeloned into a specific viral transfer vector and there is no need for the production of high titre viral stocks; and, as no viral genes are expressed there is less chance of an adverse immunologic reaction to vector sequences. The ease with which efficient in vivo gene transfer can be achieved with in vivo DNA electrotransfer is now allowing genetic analysis to be applied to a number of classic animal model systems where transgenic and embryonic stem cell techniques are not well developed, but for which a wealth of detailed descriptive embryological information is available, or surgical manipulation is much more feasible. As well as exciting applications in developmental biology, in vivo DNA electrotransfer is also being used to transfer genes to skeletal muscle and drive expression of therapeutically active proteins, and to examine exogenous gene and protein function in normal adult cells situated within the complex environment of a tissue and organ system in vivo. Thus, in effect providing the in vivo equivalent of the in vitro transient transfection assay. As the widespread use of in vivo electroporation has really only just begun, it is likely that the future will hold many more applications for this technology in basic research, biotechnology and clinical research areas.
Resumo:
The potential to use a GnRH agonist bioimplant and injection of exogenous LH to control the time of ovulation in a multiple ovulation and embryo transfer (MOET) protocol was examined in buffalo. Mixed-parity buffalo (Bubalus bubalis; 4-15-year-old; 529 13 kg LW) were randomly assigned to one of five groups (n = 6): Group 1, conventional MOET protocol; Group 2, conventional MOET with 12 It delay in injection of PGF(2alpha); Group 3, implanted with GnRH agonist to block the pre-ovulatory surge release of LH; Group 4, implanted with GnRH agonist and injected with exogenous LH (Lutropin(R), 25 mg) 24 h after 4 days of superstimulation with FSH; Group 5, implanted with GnRH agonist and injected with LH 36 h after superstimulation with FSH. Ovarian follicular growth in all buffaloes was stimulated by treatment with FSH (Folltropin-V(R), 200 mg) administered over 4 days, and was monitored by ovarian ultrasonography. At the time of estrus, the number of follicles greater than or equal to8 mm. was greater (P < 0.05) for buffaloes in Group 2 (12.8) than for buffaloes in Groups 1 (8.5), 3 (7.3), 4 (6.1) and 5 (6.8), which did not differ. All buffaloes were mated by AI after spontaneous (Groups 1-3) or induced (Groups 4 and 5) ovulation. The respective number of buffalo that ovulated, number of corpora lutea, ovulation rate (%), and embryos + oocytes recovered were: Group 1 (2, 1.8 +/- 1.6, 18.0 +/- 13.6, 0.2 +/- 0.2); Group 2 (4, 6.1 +/- 2.9, 40.5 +/- 17.5, 3.7 +/- 2.1); Group 3 (0, 0, 0, 0); Group 4 (6, 4.3 +/- 1.2, 69.3 +/- 14.2, 2.0 +/- 0.9); and Group 5 (1, 2.5 +/- 2.5, 15.5 +/- 15.5, 2.1 +/- 2.1). All buffaloes in Group 4 ovulated after injection of LH and had a relatively high ovulation rate (69%) and embryo recovery (46%). It has been shown that the GnRH agonist-LH protocol can be used to improve the efficiency of MOET in buffalo. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
We review investigations that have lead to a model of how the ventral spinal cord of higher vertebrate embryos is patterned during development. Central to this model is the secreted morphogen protein, Sonic hedgehog. There is now considerable evidence that this molecule acts in a concentration-dependent manner to direct the development of the spinal cord. Recent studies have suggested that two classes of homeodomain proteins are induced by threshold concentrations of Sonic hedgehog. Reciprocal inhibition between the two classes acts to convert the continuous gradient of Sonic hedgehog into defined domains of transcription factor expression. However, a number of aspects of ventral spinal cord patterning remain to be elucidated. Some issues currently under investigation involve temporal aspects of Shh-signalling, the role of other signals in ventral patterning and the characterisation of ventral interneurons. In this review, we discuss the current state of knowledge of these issues and present some preliminary studies aimed at furthering understanding of these processes in spinal cord patterning.