110 resultados para Numbers, Complex.
Resumo:
This paper addresses robust model-order reduction of a high dimensional nonlinear partial differential equation (PDE) model of a complex biological process. Based on a nonlinear, distributed parameter model of the same process which was validated against experimental data of an existing, pilot-scale BNR activated sludge plant, we developed a state-space model with 154 state variables in this work. A general algorithm for robustly reducing the nonlinear PDE model is presented and based on an investigation of five state-of-the-art model-order reduction techniques, we are able to reduce the original model to a model with only 30 states without incurring pronounced modelling errors. The Singular perturbation approximation balanced truncating technique is found to give the lowest modelling errors in low frequency ranges and hence is deemed most suitable for controller design and other real-time applications. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Objective: To describe new measures of risk from case-control and cohort studies, which are simple to understand and relate to numbers of the population at risk. Design: Theoretical development of new measures of risk. Setting: Review of literature and previously described measures. Main results: The new measures are: (1) the population impact number (PIN), the number of those in the whole population among whom one case is attributable to the exposure or risk factor (this is equivalent to the reciprocal of the population attributable risk),- (2) the case impact number (CIN) the number of people with the disease or outcome for whom one case will be attributable to the exposure or risk factor (this is equivalent to the reciprocal of the population attributable fraction); (3) the exposure impact number (EIN) the number of people with the exposure among whom one excess case is attributable to the exposure (this is equivalent to the reciprocal of the attributable risk); (4) the exposed cases impact number (ECIN) the number of exposed cases among whom one case is attributable to the exposure (this is equivalent to the reciprocal of the aetiological fraction). The impact number reflects the number of people in each population (the whole population, the cases, all those exposed, and the exposed cases) among whom one case is attributable to the particular risk factor. Conclusions: These new measures should help communicate the impact on a population, of estimates of risk derived from cohort or case-control studies.
Resumo:
Objective: To outline the major methodological issues appropriate to the use of the population impact number (PIN) and the disease impact number (DIN) in health policy decision making. Design: Review of literature and calculation of PIN and DIN statistics in different settings. Setting: Previously proposed extensions to the number needed to treat (NNT): the DIN and the PIN, which give a population perspective to this measure. Main results: The PIN and DIN allow us to compare the population impact of different interventions either within the same disease or in different diseases or conditions. The primary studies used for relative risk estimates should have outcomes, time periods and comparison groups that are congruent and relevant to the local setting. These need to be combined with local data on disease rates and population size. Depending on the particular problem, the target may be disease incidence or prevalence and the effects of interest may be either the incremental impact or the total impact of each intervention. For practical application, it will be important to use sensitivity analyses to determine plausible intervals for the impact numbers. Conclusions: Attention to various methodological issues will permit the DIN and PIN to be used to assist health policy makers assign a population perspective to measures of risk.
Resumo:
In order to understand the earthquake nucleation process, we need to understand the effective frictional behavior of faults with complex geometry and fault gouge zones. One important aspect of this is the interaction between the friction law governing the behavior of the fault on the microscopic level and the resulting macroscopic behavior of the fault zone. Numerical simulations offer a possibility to investigate the behavior of faults on many different scales and thus provide a means to gain insight into fault zone dynamics on scales which are not accessible to laboratory experiments. Numerical experiments have been performed to investigate the influence of the geometric configuration of faults with a rate- and state-dependent friction at the particle contacts on the effective frictional behavior of these faults. The numerical experiments are designed to be similar to laboratory experiments by DIETERICH and KILGORE (1994) in which a slide-hold-slide cycle was performed between two blocks of material and the resulting peak friction was plotted vs. holding time. Simulations with a flat fault without a fault gouge have been performed to verify the implementation. These have shown close agreement with comparable laboratory experiments. The simulations performed with a fault containing fault gouge have demonstrated a strong dependence of the critical slip distance D-c on the roughness of the fault surfaces and are in qualitative agreement with laboratory experiments.
Resumo:
Cadherin cell adhesion molecules are major determinants of tissue patterning which function in cooperation with the actin cytoskeleton [1-4]. In the context of stable adhesion [1], cadherin/catenin complexes are often envisaged to passively scaffold onto cortical actin filaments. However, cadherins also form dynamic adhesive contacts during wound healing and morphogenesis [2]. Here actin polymerization has been proposed to drive cell surfaces together [5], although F-actin reorganization also occurs as cell contacts mature [6]. The interaction between cadherins and actin is therefore likely to depend on the functional state of adhesion. We sought to analyze the relationship between cadherin homophilic binding and cytoskeletal activity during early cadherin adhesive contacts. Dissecting the specific effect of cadherin ligation alone on actin regulation is difficult in native cell-cell contacts, due to the range of juxtacrine signals that can arise when two cell surfaces adhere [7]. We therefore activated homophilic ligation using a specific functional recombinant protein. We report the first evidence that E-cadherin associates with the Arp2/3 complex actin nucleator and demonstrate that cadherin binding can exert an active, instructive influence on cells to mark sites for actin assembly at the cell surface.
Resumo:
The sexual ornamentation used by male guppies to attract females comprises many components, each of which varies considerably among males. Although natural and sexual selection have been shown to contribute to divergence among populations in male sexual ornaments, the role of sexual selection in maintaining polymorphism within populations is less clear. We used both parametric quadratic regression and nonparametric projection pursuit regression techniques to reveal the major axes of non-linear sexual selection on male ornaments. We visualized the fitness surfaces defined by these axes using thin-plate splines to allow a direct comparison of the two methodologies. Identification of the major axes of selection and their visualization was critical in determining the form and strength of nonlinear selection. Both types of analysis revealed fitness surfaces comprising three peaks, suggesting that there is more than one way to make an attractive guppy. Disruptive selection may be an important process underlying the presence of multiple sexual ornaments and may contribute to the maintenance of the high levels of polymorphism in male sexual ornaments found in guppy populations.
Resumo:
Isothermal calorimetry has been used to examine the effect of thermodynamic non-ideality on the kinetics of catalysis by rabbit muscle pyruvate kinase as the result of molecular crowding by inert cosolutes. The investigation, designed to detect substrate-mediated isomerization of pyruvate kinase, has revealed a 15% enhancement of maximal velocity by supplementation of reaction mixtures with 0.1 M proline, glycine or sorbitol. This effect of thermodynamic non-ideality implicates the existence of a substrate-induced conformational change that is governed by a minor volume decrease and a very small isomerization constant; and hence, substantiates earlier inferences that the rate-determining step in pyruvate kinase kinetics is isomerization of the ternary enzyme product complex rather than the release of products. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Background: In the presence of dNTPs, intact HIV-1 virions are capable of reverse transcribing at least part of their genome, a process known as natural endogenous reverse transcription (NERT). PCR analysis of virion DNA produced by NERT revealed that the first strand transfer reaction (1stST) was inefficient in intact virions, with minus strand (-) strong stop DNA (ssDNA) copy numbers up to 200 times higher than post-1stST products measured using primers in U3 and U5. This was in marked contrast to the efficiency of 1stST observed in single-round cell infection assays, in which (-) ssDNA and U3-U5 copy numbers were indistinguishable. Objectives: To investigate the reasons for the discrepancy in first strand transfer efficiency between intact cell-free virus and the infection process. Study design: Alterations of both NERT reactions and the conditions of cell infection were used to test whether uncoating and/or entry play a role in the discrepancy in first strand transfer efficiency. Results and Conclusions: The difference in 1stST efficiency could not be attributed simply to viral uncoating, since addition of very low concentrations of detergent to NERT reactions removed the viral envelope without disrupting the reverse transcription complex, and these conditions resulted in no improvement in 1stST efficiency. Virus pseudotyped with surface glycoproteins from either vesicular stomatitis virus or amphotrophic murine leukaemia virus also showed low levels of 1stST in low detergent NERT assays and equivalent levels of (-) ssDNA and 1stST in single-round infections of cells, demonstrating that the gp120-mediated infection process did not select for virions capable of carrying out 1stST. These data indicate that a post-entry event or factor may be involved in efficient HIV-1 reverse transcription in vivo. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The Caridina indistincta complex is a group of closely related atyid shrimps that inhabit coastal freshwater streams throughout north-eastern Australia. Using mitochondrial DNA sequence data (cytochrome oxidase 1, CO1), we (1) inferred the timing of speciation in the C. indistincta group and (2) examined the intraspecific phylogeographic patterns within the group. Assuming a shrimp-specific rate of CO1 evolution, the level of sequence divergence among species suggests that speciation took place during the Miocene epoch. Within one widespread mainland species, phylogeographic patterns suggest strong geographic 'regionalisation' of mtDNA lineages that are most likely of Pleistocene origin. By contrast, another species comprises two highly divergent mtDNA lineages that occur in sympatry. We suggest that although Pleistocene sea-level regressions appear important in generating population-level phylogeographic patterns, these events were largely unimportant in the formation of species in this group.
Resumo:
A research program on atmospheric boundary layer processes and local wind regimes in complex terrain was conducted in the vicinity of Lake Tekapo in the southern Alps of New Zealand, during two 1-month field campaigns in 1997 and 1999. The effects of the interaction of thermal and dynamic forcing were of specific interest, with a particular focus on the interaction of thermal forcing of differing scales. The rationale and objectives of the field and modeling program are described, along with the methodology used to achieve them. Specific research aims include improved knowledge of the role of surface forcing associated with varying energy balances across heterogeneous terrain, thermal influences on boundary layer and local wind development, and dynamic influences of the terrain through channeling effects. Data were collected using a network of surface meteorological and energy balance stations, radiosonde and pilot balloon soundings, tethered balloon and kite-based systems, sodar, and an instrumented light aircraft. These data are being used to investigate the energetics of surface heat fluxes, the effects of localized heating/cooling and advective processes on atmospheric boundary layer development, and dynamic channeling. A complementary program of numerical modeling includes application of the Regional Atmospheric Modeling System (RAMS) to case studies characterizing typical boundary layer structures and airflow patterns observed around Lake Tekapo. Some initial results derived from the special observation periods are used to illustrate progress made to date. In spite of the difficulties involved in obtaining good data and undertaking modeling experiments in such complex terrain, initial results show that surface thermal heterogeneity has a significant influence on local atmospheric structure and wind fields in the vicinity of the lake. This influence occurs particularly in the morning. However, dynamic channeling effects and the larger-scale thermal effect of the mountain region frequently override these more local features later in the day.
Resumo:
Activated sludge floes are a flocculated mass of microorganisms, extracellular polymeric substances (EPS) and adsorbed organic and inorganic material. The structure of the floes is very heterogeneous and floes with very different properties and morphologies may occur, depending on the conditions in the activated sludge treatment plant and wastewater composition. Present thinking suggests that cations, such as calcium, create cationic bridges with EPS excreted by the bacteria and thereby hold the various floe constituents together. However, due to the complex and heterogeneous nature of activated sludge, the mechanisms have neither been thoroughly investigated nor successfully quantified. A better understanding and description of the biological flocculation process is necessary in order to establish more efficient operational strategies. The main aim of this study was to get a comprehensive and unique insight into the floe properties of activated sludge and to assess the relative impact of chemical and physical parameters. A variety of sludges from full scale treatment plants with different settling properties were characterised. The interrelationships between floe parameters such as composition of EPS, surface properties and floe structure, and their effect on the flocculation and separation properties were assessed. The results indicate that the EPS, both in terms of quantity and quality, are very important for the floe properties of the activated sludge. However, presence of filaments may alter the physical properties of the floes considerably. The EPS showed positive correlations to sludge volume index (SVI) if only sludges with low or moderate numbers of filaments were included. The surface properties were more affected by the composition of the EPS than by the number of filaments. The EPS showed positive correlation to negative surface charge and a negative correlation to relative hydrophobicity and flocculation ability. The negative correlation between flocculation ability and amount of EPS was surprising. The shear sensitivity, measured as degree of erosion of floes when subjected to shear, was more affected by floe size and number of filaments than amount of EPS.
Resumo:
In this study, a combination of recA-based PCR assays and 16S rDNA restriction fragment length polymorphism (RFLP) analysis was used to determine the genomovar diversity of clinical Burkholderia cepacia complex isolates. Twenty-eight isolates were prospectively collected from patients attending a large Australian adult cystic fibrosis (CF) unit, 22 isolates were referred from other Australian CF units and a further eight isolates originated from patients without CF. The 28 prospectively collected isolates were distributed amongst the following genomovars: Burkholderia cepacia genomovar I (28.6%), Burkholderia multivorans (21.4%), Burkholderia cepacia genomovar III (39.3%), Burkholderia vietnamiensis (3.6%) and Burkholderia ambifaria (7.1%). The results of this study highlight the usefulness of 16S rDNA RFLP typing for the identification of other Burkholderia spp. and non-fermenting gram-negative bacteria.