125 resultados para Gestió ambiental -- Font de Can Verdaguer (St. Gregori, Gironès)
Resumo:
Pulverised New Zealand coal samples have been tested from an initial temperature of 40 degreesC and reacted adiabatisally in an oven with oxygen to provide a full temperature history of auto-oxidation up to the self-sustained process of combustion. This procedure produces a self-heating rate index, R-70, calculated as the ratio of the time taken to reach 70 degreesC (degreesC/h). The R-70 index is a measure of the coal's propensity to spontaneous combustion. R-70 values for New Zealand coals are much higher than any previously published results. They show a rank dependence, whereby subbituminous coals have the highest propensity to spontaneous combustion (14.91-17.23 degreesC/h). A lignite sample has an R-70 value of 7.76 degreesC/h, and high-volatile bituminous B coals have R-70 values of 0.31-2.23 degreesC/h. Samples stored for 2 years show the same rank trend. The nature of this trend is most likely a function of the internal surface area of the coal that governs the available sites for oxidation. Calculating the Suggate rank; for any New Zealand coal can be used to rare its propensity to spontaneous combustion. Resin bodies in the subbituminous coal show no propensity to spontaneous combustion. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Flotillin-1 was recently shown to be enriched on detergent-resistant domains of the plasma membrane called lipid rafts. These rafts, enriched in sphingolipids and cholesterol, sequester certain proteins while excluding others. Lipid rafts have been implicated in numerous cellular processes including signal transduction, membrane trafficking and molecular sorting. In this study, we demonstrate both morphologically and biochemically that lipid rafts are present on phagosomes, These structures are enriched in flotillin-1 and devoid of the main phagosomes membrane protein lysosomal-associated membrane protein (LAMP1), The flotillin-1 present on phagosomes does not originate from the plasma membrane during phagocytosis but accumulates gradually on maturing phagosomes, Treatment with bafilomycin A1, a compound that inhibits the proton pump ATPase and prevents the fusion of phagosomes with late endocytic organelles, prevents the acquisition of flotillin-1 by phagosomes, indicating that this protein might be recruited on phagosomes from endosomal organelles. A proteomic characterization of the lipid rafts of phagosomes indicates that actin, the alpha- and beta -subunits of heterotrimeric G proteins, as well as subunits of the proton pump V-ATPase are among the constituents of these domains. Remarkably, the intracellular parasite Leishmania donovani can actively inhibit the acquisition of flotillin-1-enriched lipid rafts by phagosomes and the maturation of these organelles. These results indicate that specialized functions required for phagolysosome biogenesis may occur at focal points on the phagosome membrane, and therefore represent a potential target of intracellular pathogens.
Resumo:
The homeotic genes are instrumental in establishing segment-specific characteristics. In Drosophila embryos there is ample evidence that the homeotic genes are involved in establishing the differences in the pattern of sense organs between segments. The chordotonal organs are compound sense organs made up of several stretch receptive sensilla. A set of serially homologous chordotonal organs, Ich3 in the 1(st) thoracic segment, dch3 in the 2(nd) and 3(rd) thoracic segments and Ich5 in abdominal segments 1 to 7, is composed of different numbers of sensilla with different positions and orientations. Here we examine this set of sense organs and a companion set, vchA/B and vch 1, in the wild type and mutants for Sex combs reduced, Antennapedia, Ultrabithorax, and abdominal-A, using immunostaining. Mutant phenotypes indicate that Ultrabithorax and abdominal-A in particular influence the formation of these sense organs. Differential expression of abdominal-A and Ultrabithorax within compartments of individual parasegments can precisely modulate the types of sense organs that will arise from a segment.
Resumo:
It is predicted that dryland salinity will affect up to 17 Mha of the Australian landscape by 2050, and therefore, monitoring the health of tree plantings and remnant native vegetation in saline areas is increasingly important. Casuarina glauca Sieber ex Spreng. has considerable salinity tolerance and is commonly planted in areas with a shallow, saline water table. To evaluate the potential of using the nitrogenous composition of xylem sap to assess salinity stress in C. glauca, the responses of trees grown with various soil salinities in a greenhouse were compared with those of trees growing in field plots with different water table depths and groundwater salinities. In the greenhouse, increasing soil salinity led to increased allocation of nitrogen (N) to proline and arginine in both stem and root xylem sap, with coincident decreases in citrulline and asparagine. Although the field plots were ranked as increasingly saline-based on ground water salinity and depth-only the allocation of N to citrulline differed significantly between the field plots. Within each plot, temporal variation in the composition of the xylem sap was related to rainfall, rainfall infiltration and soil salinity. Periods of low rainfall and infiltration and higher soil salinity corresponded with increased allocation of N to proline and arginine in the xylem sap. The allocation of N to citrulline and asparagine increased following rainfall events where rain was calculated to have infiltrated sufficiently to decrease soil salinity. The relationship between nitrogenous composition of the xylem sap of C. glauca and soil salinity indicates that the analysis of xylem sap is an effective method for assessing changes in salinity stress in trees at a particular site over time. However, the composition of the xylem sap proved less useful as a comparative index of salinity stress in trees growing at different sites.
Resumo:
Today's challenge to medical educators is to provide continuing education that supports excellence in clinical practice while finding new approaches to make learning more stimulating, motivating, and entertaining. At our hospital we are experimenting with innovative teaching techniques, incorporating games and debate, which encapsulate core concepts of the theory of adult learning: active participation by learners, application of knowledge, informal presentation, and feedback(1).
Resumo:
The specific status of the head and body lice of humans has been debated for more than 200 yr. To clarify the specific status of head and body lice, we sequenced 524 base pairs (bp) of the cytochrome oxidase I (COI) gene of 28 head and 28 body lice from nine countries. Ten haplotypes that differed by 1-5 bp at II nucleotide positions were identified. A phylogeny of these sequences indicates that these head and body lice are not from reciprocally monophyletic lineages. Indeed, head and body lice share three of the 10 haplotypes we found. F-ST values and exact tests of haplotype frequencies showed significant differences between head and body lice. However, the same tests also showed significant differences among lice from different countries. Indeed, more of the variation in haplotype frequencies was explained by differences among lice from different countries than by differences between head and body lice. Our results indicate the following: (1) bead and body lice do not represent reciprocally monophyletic lineages and are conspecific; (2) gene flow among populations of lice from different countries is limited; and (3) frequencies of COI haplotypes can be used to study maternal gene flow among populations of head and body lice and thus transmission of lice among their human hosts.
Resumo:
The aim of this experiment was to determine the effectiveness of two video-based perceptual training approaches designed to improve the anticipatory skills of junior tennis players. Players were assigned equally to an explicit learning group, an implicit learning group, a placebo group or a control group. A progressive temporal occlusion paradigm was used to examine, before and after training, the ability of the players to predict the direction of an opponent's service in an in-vivo on-court setting. The players responded either through hitting a return stroke or making a verbal prediction of stroke direction. Results revealed that the implicit learning group, whose training required them to predict serve speed direction while viewing temporally occluded video footage of the return-of-serve scenario, significantly improved their prediction accuracy after the training intervention. However, this training effect dissipated after a 32 day unfilled retention interval. The explicit learning group, who received instructions about the specific aspects of the pre-contact service kinematics that are informative with respect to service direction, did not demonstrate any significant performance improvements after the intervention. This, together with the absence of any significant improvements for the placebo and control groups, demonstrated that the improvement observed for the implicit learning group was not a consequence of either expectancy or familiarity effects.
Resumo:
Three experiments were conducted examining group members' responses to criticism from ingroup and outgroup members. In Experiment I a, Australians read scripts of a person making either negative or positive comments about Australia. The speaker was identified as coming from either Australia (ingroup member) or another country (outgroup member). Responses indicated an intergroup sensitivity effect; that is, while ingroup criticisms were tolerated surprisingly well, outgroup criticisms were met with sensitivity and defensiveness. This pattern was replicated using the identity of,university student' (Experiment 1b). Experiment 2 demonstrated that the intergroup sensitivity effect is driven by perceptions that ingroup criticisms are seen to be more legitimate and more constructive than are outgroup criticisms. The results are discussed in terms of their implications for intragroup and intergroup relations. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
A comprehensive probabilistic model for simulating microstructure formation and evolution during solidification has been developed, based on coupling a Finite Differential Method (FDM) for macroscopic modelling of heat diffusion to a modified Cellular Automaton (mCA) for microscopic modelling of nucleation, growth of microstructures and solute diffusion. The mCA model is similar to Nastac's model for handling solute redistribution in the liquid and solid phases, curvature and growth anisotropy, but differs in the treatment of nucleation and growth. The aim is to improve understanding of the relationship between the solidification conditions and microstructure formation and evolution. A numerical algorithm used for FDM and mCA was developed. At each coarse scale, temperatures at FDM nodes were calculated while nucleation-growth simulation was done at a finer scale, with the temperature at the cell locations being interpolated from those at the coarser volumes. This model takes account of thermal, curvature and solute diffusion effects. Therefore, it can not only simulate microstructures of alloys both on the scale of grain size (macroscopic level) and the dendrite tip length (mesoscopic level), but also investigate nucleation mechanisms and growth kinetics of alloys solidified with various solute concentrations and solidification morphologies. The calculated results are compared with values of grain sizes and solidification morphologies of microstructures obtained from a set of casting experiments of Al-Si alloys in graphite crucibles.
Resumo:
The process of establishing long-range neuronal connections can be divided into at least three discrete steps. First, axons need to be stimulated to grow and this growth must be towards appropriate targets. Second, after arriving at their target, axons need to be directed to their topographically appropriate position and in some cases, such as in cortical structures, they must grow radially to reach the correct laminar layer Third, axons then arborize and form synaptic connections with only a defined subpopulation of potential post-synaptic partners. Attempts to understand these mechanisms in the visual system have been ongoing since pioneer studies in the 1940s highlighted the specificity of neuronal connections in the retino-tectal pathway. These classical systems-based approaches culminated in the 1990s with the discovery that Eph-ephrin repulsive interactions were involved in topographical mapping. In marked contrast, it was the cloning of the odorant receptor family that quickly led to a better understanding of axon targeting in the olfactory system. The last 10 years have seen the olfactory pathway rise in prominence as a model system for axon guidance. Once considered to be experimentally intractable, it is now providing a wealth of information on all aspects of axon guidance and targeting with implications not only for our understanding of these mechanisms in the olfactory system but also in other regions of the nervous system.